Binet-Legendge ellipsoid in conformal Finsler geometry

Vladimir S. Matveev (Jena)

Based on the paper arXiv:1104.1647 joint with Marc Troyanov
Binet-Legendge ellipsoid in conformal Finsler geometry

Vladimir S. Matveev (Jena)

Based on the paper arXiv:1104.1647 joint with Marc Troyanov

Abstract: I show a simple construction from convex geometry that solves many named problems in Finsler geometry
Definition of Finsler metrics:
Definition of Finsler metrics: Finsler metric is a continuous function $F : TM \to R$ such that for every $x \in M$ the restriction $F|_{T_xM}$ is a Minkowski norm, that is $\forall u, v \in T_xM$, $\forall \lambda > 0$
(a) $F(\lambda \cdot v) = \lambda \cdot F(v)$,
(b) $F(u + v) \leq F(u) + F(v)$,
(c) $F(v) = 0 \iff v = 0$.
Definition of Finsler metrics: Finsler metric ist a continuous function $F : TM \to R$ such that for every $x \in M$ the restriction $F|_{T_xM}$ is a Minkowski norm, that is $\forall u, v \in T_xM, \forall \lambda > 0$
(a) $F(\lambda \cdot v) = \lambda \cdot F(v)$,
(b) $F(u + v) \leq F(u) + F(v)$,
(c) $F(v) = 0 \iff v = 0$.

Euclidean norm:
$E : R^n \to R$ of the form
$E(v) = \sqrt{\sum_{i,j} a_{ij} v^i v^j}$,
where (a_{ij}) is a positively definite symmetric matrix
Definition of Finsler metrics: Finsler metric is a continuous function \(F : TM \to R \) such that for every \(x \in M \) the restriction \(F|_{T_xM} \) is a Minkowski norm, that is \(\forall u, v \in T_xM, \; \forall \lambda > 0 \)
(a) \(F(\lambda \cdot v) = \lambda \cdot F(v) \),
(b) \(F(u + v) \leq F(u) + F(v) \),
(c) \(F(v) = 0 \iff v = 0 \).

Euclidean norm:
\(E : R^n \to R \) of the form
\[
E(v) = \sqrt{\sum_{i,j} a_{ij}v^i v^j},
\]
where \((a_{ij}) \) is a positively definite symmetric matrix

(Minkowski) norm:
\(B : R^n \to R_{\geq 0} \) with
(a) \(B(\lambda \cdot v) = \lambda \cdot B(v) \),
(b) \(B(u + v) \leq B(u) + B(v) \),
(c) \(B(v) = 0 \iff v = 0 \).
Definition of Finsler metrics: A Finsler metric is a continuous function $F : TM \rightarrow R$ such that for every $x \in M$ the restriction $F|_{T_x M}$ is a Minkowski norm, that is $\forall u, v \in T_x M, \forall \lambda > 0$

(a) $F(\lambda \cdot v) = \lambda \cdot F(v)$,
(b) $F(u + v) \leq F(u) + F(v)$,
(c) $F(v) = 0 \iff v = 0$.

Euclidean norm: $E : \mathbb{R}^n \rightarrow \mathbb{R}$ of the form

$$E(v) = \sqrt{\sum_{i,j} a_{ij} v^i v^j},$$

where (a_{ij}) is a positively definite symmetric matrix.

(Minkowski) norm: $B : \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$ with

(a) $B(\lambda \cdot v) = \lambda \cdot B(v)$,
(b) $B(u + v) \leq B(u) + B(v)$,
(c) $B(v) = 0 \iff v = 0$.

(Local) Riemannian metric: $g : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}$ of the form

$$g_x(v, u) = \sum_{i,j} a_{ij}(x) v^i u^j,$$

where for every x

$(a_{ij}(x))$ is a positively definite symmetric matrix.
Definition of Finsler metrics: A Finsler metric is a continuous function $F : TM \to R$ such that for every $x \in M$ the restriction $F|_{T_x M}$ is a Minkowski norm, that is $\forall u, v \in T_x M, \forall \lambda > 0$

(a) $F(\lambda \cdot v) = \lambda \cdot F(v)$,
(b) $F(u + v) \leq F(u) + F(v)$,
(c) $F(v) = 0 \iff v = 0$.

Euclidean norm: $E : \mathbb{R}^n \to \mathbb{R}$ of the form

$$E(v) = \sqrt{\sum_{i,j} a_{ij} v^i v^j},$$

where (a_{ij}) is a positively definite symmetric matrix.

(Minkowski) norm: $B : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ with

(a) $B(\lambda \cdot v) = \lambda \cdot B(v)$,
(b) $B(u + v) \leq B(u) + B(v)$,
(c) $B(v) = 0 \iff v = 0$.

(Local) Riemannian metric: $g : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ of the form

$$g_x(v, u) = \sum_{i,j} a_{ij}(x) v^i u^j,$$

where for every x $(a_{ij}(x))$ is a positively definite symmetric matrix.

(LOCAL) FINSLER METRIC: $F : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ such that for every x

$F(x, \cdot) : \mathbb{R}^n \to \mathbb{R}$ is a norm, i.e., satisfies

(a), (b), (c).
How to visualize Finsler metrics

Repeat: Minkowski norm is a function $B : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ with

(a) $B(\lambda \cdot v) = \lambda \cdot B(v)$,

(b) $B(u + v) \leq B(u) + B(v)$,

(c) $B(v) = 0 \iff v = 0$
How to visualize Finsler metrics

Repeat: Minkowski norm is a function $B : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ with

(a) $B(\lambda \cdot v) = \lambda \cdot B(v)$,

(b) $B(u + v) \leq B(u) + B(v)$,

(c) $B(v) = 0 \iff v = 0$

It is known (Minkowski) that the unit ball determines the norm uniquely:

for a given convex body $K \in \mathbb{R}^n$ such that $0 \in \text{int}(K)$ there exists an unique norm B such that $K = \{ x \in \mathbb{R}^n \mid B(x) \leq 1 \}$.

There exists a unique norm such that (the convex body) K is the unite ball in this norm
How to visualize Finsler metrics

Repeat: Minkowski norm is a function $B : R^n \rightarrow R_{\geq 0}$ with

(a) $B(\lambda \cdot v) = \lambda \cdot B(v)$,

(b) $B(u + v) \leq B(u) + B(v)$,

(c) $B(v) = 0 \iff v = 0$

It is known (Minkowski) that the unit ball determines the norm uniquely:

for a given convex body $K \in R^n$ such that $0 \in \text{int}(K)$ there exists an unique norm B such that $K = \{ x \in R^n \mid B(x) \leq 1 \}$.

Thus, in order to make a picture of a Finsler metric it is sufficient to draw unit balls at the tangent spaces.

There exists a unique norm such that (the convex body) K is the unite ball in this norm.
Examples:
Examples:

Riemannian metric: every unit ball is an ellipsoid symmetric w.r.t. 0.
Examples:

Riemannian metric: every unit ball is an ellipsoid symmetric w.r.t. 0.

Minkowski metric on \mathbb{R}^n: $F(x, v) = B(v)$ for a certain norm B, i.e., the metric is invariant w.r.t. the standard translations of \mathbb{R}^n.
Examples:

Riemannian metric: every unit ball is an ellipsoid symmetric w.r.t. 0.

![Riemannian 2D metric: all unite balls are ellipses](image)

Minkowski metric on \(\mathbb{R}^n \): \(F(x, v) = B(v) \) for a certain norm \(B \), i.e., the metric is invariant w.r.t. the standard translations of \(\mathbb{R}^n \).

![Minkowski 2D metric](image)

Arbitrary Finsler metric on \(\mathbb{R}^n \): \(F(x, v) = B(v) \) for a certain norm \(B \), i.e., the metric is invariant w.r.t. the standard translations of \(\mathbb{R}^n \).

![Finsler 2D metric: unite balls are convex; that's all](image)
I show a simple trick in Finlser geometry
Plan — Main messages of my talk

- I show a simple trick in Finlser geometry
- I demonstrate that the trick is extremely effective in the Finlser geometry: I show a bunch of named problems that were solved.
Plan — Main messages of my talk

- I show a simple trick in Finlser geometry
- I demonstrate that the trick is extremely effective in the Finlser geometry: I show a bunch of named problems that were solved.
- Finlser geometers always emphasize that Finsler metric can be used in the description of nature. Could the trick be applied there?
Main Trick

Given a (smooth) Finsler metrics F we construct a (smooth) RIEMANNIAN metric on g_F such that
Main Trick

Given a (smooth) Finsler metrics F we construct a (smooth) RIEMANNIAN metric on g_F such that

- The Riemannian metric g_F has the same (or better) regularity as the Finsler metric F.

\[F \xrightarrow{\text{canonically construct}} g_F \]
Main Trick

\[F \xrightarrow{\text{canonically construct}} g_F \]

Given a (smooth) Finsler metrics \(F \) we construct a (smooth) RIEMANNIAN metric on \(g_F \) such that
- The Riemannian metric \(g_F \) has the same (or better) regularity as the Finsler metric \(F \)
- If \(F \) is Riemannian, i.e. if \(F(x, \xi) = \sqrt{g_x(\xi, \xi)} \) for a some Riemannian metric \(g \), then \(g_F = g \)
Main Trick

Given a (smooth) Finsler metrics F we construct a (smooth)
RIEMANNIAN metric on g_F such that
- The Riemannian metric g_F has the same (or better) regularity as the
 Finsler metric F
- If F is Riemannian, i.e. if $F(x, \xi) = \sqrt{g_x(\xi, \xi)}$ for a some Riemannian
 metric g, then $g_F = g$
- If two Finsler metrics F_1 and F_2 are conformally equivalent, i.e., if
 $F_1(x, \xi) = \lambda(x)F_2(x, \xi)$ for some function $\lambda : M \to R$, then the
 corresponding Riemannian metrics are also conformally equivalent with
 essentially the same conformal factor: $g_{F_1} = \lambda^2 g_{F_2}$
Main Trick

Given a (smooth) Finsler metrics F we construct a (smooth) RIEMANNIAN metric on g_F such that

- The Riemannian metric g_F has the same (or better) regularity as the Finsler metric F
- If F is Riemannian, i.e. if $F(x, \xi) = \sqrt{g_x(\xi, \xi)}$ for a some Riemannian metric g, then $g_F = g$
- If two Finsler metrics F_1 and F_2 are conformally equivalent, i.e., if $F_1(x, \xi) = \lambda(x)F_2(x, \xi)$ for some function $\lambda: M \to R$, then the corresponding Riemannian metrics are also conformally equivalent with essentially the same conformal factor: $g_{F_1} = \lambda^2 g_{F_2}$

This allows to use the results and methods from (much better developed) Riemannian geometry to Finsler geometry. I will explain how and show many application
Construction of the (Binet-Legendre) Euclidean structure in every tangent space
Construction of the (Binet-Legendre) Euclidean structure in every tangent space

For every convex body $K \subseteq V$ such that $0 \in \text{int}(K)$, let us now construct an Euclidean structure in V.
Construction of the (Binet-Legendre) Euclidean structure in every tangent space

For every convex body $K \subseteq V$ such that $0 \in \text{int}(K)$, let us now construct an Euclidean structure in V.
Construction of the (Binet-Legendre) Euclidean structure in every tangent space

For every convex body $K \subseteq V$ such that $0 \in \text{int}(K)$, let us now construct an Euclidean structure in V.

We take an arbitrary linear volume form Ω in V, i.e., $\Omega = \text{const} \cdot dx^1 \wedge \ldots \wedge dx^n$, and construct contravariant bilinear form $g^* : V^* \times V^* \to R$ (where V^* is the dual vector space to V), i.e., g^{1j} by

$$g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(x) \nu(x) d\Omega$$
Construction of the (Binet-Legendre) Euclidean structure in every tangent space

For every convex body $K \subseteq V$ such that $0 \in \text{int}(K)$, let us now construct an Euclidean structure in V.

We take an arbitrary linear volume form Ω in V, i.e., $\Omega = \text{const} \cdot dx^1 \wedge \ldots \wedge dx^n$, and construct contravariant bilinear form $g^* : V^* \times V^* \to \mathbb{R}$ (where V^* is the dual vector space to V), i.e., g^{1j} by

$$g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(x)\nu(x)d\Omega$$

(i.e., the function we integrate takes on $x \in K \subseteq V$ the value $\xi(x)\nu(x)$; ξ and ν are elements of V^*, i.e., are linear functions on V.)
Construction of the (Binet-Legendre) Euclidean structure in every tangent space

For every convex body $K \subseteq V$ such that $0 \in \text{int}(K)$, let us now construct an Euclidean structure in V.

We take an arbitrary linear volume form Ω in V, i.e., $\Omega = \text{const} \cdot dx^1 \wedge \ldots \wedge dx^n$, and construct contravariant bilinear form $g^* : V^* \times V^* \rightarrow R$ (where V^* is the dual vector space to V), i.e., g^{1j} by

$$g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(x)\nu(x)d\Omega$$

(i.e., the function we integrate takes on $x \in K \subset V$ the value $\xi(x)\nu(x)$; ξ and ν are elements of V^*, i.e., are linear functions on V.)

Example. Let us calculate g^{12} by this formula: in this case $\xi(k) = \xi(x_1, \ldots, x_n) = x_1$, $\nu(k) = \nu(x_1, \ldots, x_n) = x_2$, and $g^{12} = \frac{1}{\int_K 1d\Omega} \int_K x_1x_2 d\Omega$.
Construction of the (Binet-Legendre) Euclidean structure in every tangent space

For every convex body $K \subseteq V$ such that $0 \in \text{int}(K)$, let us now construct an Euclidean structure in V.

We take an arbitrary linear volume form Ω in V, i.e., $\Omega = \text{const} \cdot dx^1 \wedge ... \wedge dx^n$, and construct contravariant bilinear form $g^*: V^* \times V^* \to R$ (where V^* is the dual vector space to V), i.e., g^{1j} by

$$g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(x)\nu(x)d\Omega$$

(i.e., the function we integrate takes on $x \in K \subset V$ the value $\xi(x)\nu(x)$; ξ and ν are elements of V^*, i.e., are linear functions on V.)

Example. Let us calculate g^{12} by this formula: in this case $\xi(k) = \xi(x_1, ..., x_n) = x_1$, $\nu(k) = \nu(x_1, ..., x_n) = x_2$, and $g^{12} = \frac{1}{\int_K 1d\Omega} \int_K x_1x_2d\Omega$.

$g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(k) \nu(k) d\Omega$

Evidently, g is a well-defined Euclidean structure.
\[g^*(\xi, \nu) := \frac{1}{Vol_\Omega(K)} \int_K \xi(k) \nu(k) d\Omega \]

Evidently, \(g \) is a well-defined Euclidean structure

- it does not depend on \(\Omega \) (because the only freedom is choosing \(\Omega \), multiplication by a constant, does not influence the result),
\(g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(k) \nu(k) d\Omega \)

Evidently, \(g \) is a well-defined Euclidean structure

- it does not depend on \(\Omega \) (because the only freedom is choosing \(\Omega \), multiplication by a constant, does not influence the result),
- It is bilinear and positive definite
\[g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(k) \nu(k) \, d\Omega \]

Evidently, \(g \) is a well-defined Euclidean structure

- it does not depend on \(\Omega \) (because the only freedom is choosing \(\Omega \), multiplication by a constant, does not influence the result),
- it is bilinear and positive definite

Moreover,

- \(g' \) constructed by \(K' := \frac{1}{\lambda} \cdot K \) is given by \(g' = \lambda^2 \cdot g \)
\[g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(k) \nu(k) \, d\Omega \]

Evidently, \(g \) is a well-defined Euclidean structure

- it does not depend on \(\Omega \) (because the only freedom is choosing \(\Omega \), multiplication by a constant, does not influence the result),
- It is bilinear and positive definite

Moreover,
- \(g' \) constructed by \(K' := \frac{1}{\lambda} \cdot K \) is given by \(g' = \lambda^2 \cdot g \)
\[g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(k) \nu(k) d\Omega \]

Evidently, \(g \) is a well-defined Euclidean structure

- it does not depend on \(\Omega \) (because the only freedom is choosing \(\Omega \), multiplication by a constant, does not influence the result),
- It is bilinear and positive definite

Moreover,

- \(g' \) constructed by \(K' := \frac{1}{\lambda} \cdot K \) is given by \(g' = \lambda^2 \cdot g \)

Remark. The construction is too easy to be new – our motivation came from classical mechanics, and our construction is close to one of the inertia ellipsoid (Poinsot, Binet, Legendre).
\(g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(k)\nu(k) d\Omega \)

Evidently, \(g \) is a well-defined Euclidean structure

- it does not depend on \(\Omega \) (because the only freedom is choosing \(\Omega \), multiplication by a constant, does not influence the result),
- It is bilinear and positive definite

Moreover,

- \(g' \) constructed by \(K' := \frac{1}{\lambda} \cdot K \) is given by \(g' = \lambda^2 \cdot g \)

Remark. The construction is too easy to be new – our motivation came from classical mechanics, and our construction is close to one of the inertia ellipsoid (Poinsot, Binet, Legendre). In the convex geometry, Milman et al 1990 had a similar construction in an Euclidean space
\[g^*(\xi, \nu) := \frac{1}{\text{Vol}_\Omega(K)} \int_K \xi(k) \nu(k) \, d\Omega \]

Evidently, \(g \) is a well-defined Euclidean structure

- it does not depend on \(\Omega \) (because the only freedom is choosing \(\Omega \), multiplication by a constant, does not influence the result),
- It is bilinear and positive definite

Moreover,

\(g' \) constructed by \(K' := \frac{1}{\lambda} \cdot K \) is given by \(g' = \lambda^2 \cdot g \)

Remark. The construction is too easy to be new – our motivation came from classical mechanics, and our construction is close to one of the inertia ellipsoid (Poinsot, Binet, Legendre). In the convex geometry, Milman et al 1990 had a similar construction in an Euclidean space.
Thus, by a Finsler metric F, we canonically constructed a Euclidean structure on every tangent space, i.e., a Riemannian metric g_F. If the Finsler metric is smooth, then the Riemannian metric is also smooth.
Thus, by a Finsler metric F, we canonically constructed a Euclidean structure on every tangent space, i.e., a Riemannian metric g_F. If the Finsler metric is smooth, then the Riemannian metric is also smooth.

This metric has the following property: $g_{\lambda F} = \lambda^2 \cdot g_F$.
Thus, by a Finsler metric F, we canonically constructed a Euclidean structure on every tangent space, i.e., a Riemannian metric g_F. If the Finsler metric is smooth, then the Riemannian metric is also smooth.

This metric has the following property: $g_{\lambda \cdot F} = \lambda^2 \cdot g_F$.

In particular, if ϕ is isometry, similarity, or conformal transformation of F, it is an isometry, similarity, or conformal transformation of g_F.
General schema how to apply the trick

1. One use it to reformulate the problem in Finsler geometry as the problem in better studied Riemannian geometry
1. One use it to reformulate the problem in Finsler geometry as the problem in better studied Riemannian geometry.

2. One solves this problem in Riemannian geometry (in most cases I will talk about the Riemannian problem is already solved) and obtains additional information.
General schema how to apply the trick

1. One use it to reformulate the problem in Finsler geometry as the problem in better studied Riemannian geometry
2. One solves this problem in Riemannian geometry (in most cases I will talk about the Riemannian problem is already solved) and obtains additional information
3. And uses the additional information to solve the initial problem.
First application: Wang’s Theorem for all dimensions.
First application: Wang’s Theorem for all dimensions.

Theorem. Let \((M^n, F)\) be a \(C^2\)-smooth connected Finsler manifold. If the dimension of the space of Killing vector fields of \((M, F)\) is greater than \(\frac{n(n-1)}{2} + 1\), then \(F\) is actually a Riemannian metric.
First application: Wang’s Theorem for all dimensions.

Theorem. Let \((M^n, F)\) be a \(C^2\)-smooth connected Finsler manifold. If the dimension of the space of Killing vector fields of \((M, F)\) is greater than \(\frac{n(n-1)}{2} + 1\), then \(F\) is actually a Riemannian metric.

History: For \(n \neq 2, 4\) Theorem was proved 1947 by H.C. Wang. This theorem answers a question of S. Deng and Z. Hou (2007).
Theorem. Let \((M^n, F)\) be a \(C^2\)-smooth connected Finsler manifold. If the dimension of the space of Killing vector fields of \((M, F)\) is greater than \(\frac{n(n-1)}{2} + 1\), then \(F\) is actually a Riemannian metric.

History: For \(n \neq 2, 4\) Theorem was proved 1947 by H.C. Wang. This theorem answers a question of S. Deng and Z. Hou (2007).

Proof. Let \(F\) be a Finsler metrics admitting \(\frac{n(n-1)}{2} + 2\) Killing vector fields. Consider the Riemannian metric \(g_F\). The Killing vector fields of \(F\) are Killing vector fields of \(g_F\).
First application: Wang’s Theorem for all dimensions.

Theorem. Let \((M^n, F)\) be a \(C^2\)-smooth connected Finsler manifold. If the dimension of the space of Killing vector fields of \((M, F)\) is greater than \(\frac{n(n-1)}{2} + 1\), then \(F\) is actually a Riemannian metric.

History: For \(n \neq 2, 4\) Theorem was proved 1947 by H.C. Wang. This theorem answers a question of S. Deng and Z. Hou (2007).

Proof. Let \(F\) be a Finsler metrics admitting \(\frac{n(n-1)}{2} + 2\) Killing vector fields. Consider the Riemannian metric \(g_F\). The Killing vector fields of \(F\) are Killing vector fields of \(g_F\).

Now, metrics admitting “many” Killing vector fields are well-studied: It is known (and is a nontrivial mathematical statement due to (Yano, Kato)) that for metrics with at least \(\frac{n(n-1)}{2} + 2\) Killing vector field the isotropy subgroup of the isometry group acts transitively on the unite sphere in the tangent space.

The isotropy group corresponding to \(x \in M\) consists of all isometries taking \(x\) to \(x\). It preserves the Finsler and the Riemannian metric. Then, it preserves the quotient \(F(\xi)^2/g(\xi, \xi)\). Since it acts transitively, \(F(\xi) = \text{const} \sqrt{g(\xi, \xi)}\), i.e., \(F\) is a Riemannian metric.
The Liouville Theorem for Minkowski spaces and the solution to a problem by Matsumoto.

Theorem. Let \((V, F)\) be an non-euclidean Minkowski space. If \(\phi : U_1 \rightarrow U_2\) is a conformal map between two domains \(U_1 \subset V\) and \(U_2 \subset V\), then \(\phi\) is (the restriction of) a similarity, that is the composition of an isometry and a homothety \(x \mapsto \text{const} \cdot x\).
The Liouville Theorem for Minkowski spaces and the solution to a problem by Matsumoto.

Theorem. Let \((V, F)\) be an non-euclidean Minkowski space. If \(\phi : U_1 \to U_2\) is a conformal map between two domains \(U_1 \subset V\) and \(U_2 \subset V\), then \(\phi\) is (the restriction of) a similarity, that is the composition of an isometry and a homothety \(x \mapsto \text{const} \cdot x\).

Remark. Theorem generalizes classical result of Liouville for Minkowski metrics: Liouville has shown 1850 that every conformal transformation of the standard \((\mathbb{R}^n_{\geq 3}, g_{\text{euclidean}})\) is a similarity or a Möbius transformation, i.e., a composition of a similarity and an inversion. We see that for noneuclidean Finsler metrics only similarities are allowed.
The Liouville Theorem for Minkowski spaces and the solution to a problem by Matsumoto.

Theorem. Let \((V,F)\) be an non-euclidean Minkowski space. If \(\phi: U_1 \to U_2\) is a conformal map between two domains \(U_1 \subset V\) and \(U_2 \subset V\), then \(\phi\) is (the restriction of) a similarity, that is the composition of an isometry and a homothety \(x \mapsto \text{const} \cdot x\).

Remark. Theorem generalizes classical result of Liouville for Minkowski metrics: Liouville has shown 1850 that every conformal transformation of the standard \((\mathbb{R}^{n\geq 3}, g_{\text{euclidean}})\) is a similarity or a Möbius transformation, i.e., a composition of a similarity and an inversion. We see that for noneuclidean Finsler metrics only similarities are allowed.

Theorem answers the question of Matsumoto 2001 and will be uses below.
Proof of: Every conformal mapping of a Minkowski space is a similarity

Proof for $\dim(M) > 2$. I will use: if ϕ is a conformal transformation of F, then it is a conformal transformation of g_F. Moreover, if ϕ is a conformal transformation of F and similarity of g_F, then it is a similarity of F.

Proof of: Every conformal mapping of a Minkowski space is a similarity

Proof for $\dim(M) > 2$. I will use: if ϕ is a conformal transformation of F, then it is a conformal transformation of g_F. Moreover, if ϕ is a conformal transformation of F and similarity of g_F, then it is a similarity of F.

We consider the metric g_F.
Proof of: Every conformal mapping of a Minkowski space is a similarity

Proof for \(\dim(M) > 2\). I will use: if \(\phi\) is a conformal transformation of \(F\), then it is a conformal transformation of \(g_F\). Moreover, if \(\phi\) is a conformal transformation of \(F\) and similarity of \(g_F\), then it is a similarity of \(F\).

We consider the metric \(g_F\). It is Euclidean; w.l.o.g. we think that \(g_F = dx_1^2 + ... + dx_n^2\).
Proof of: Every conformal mapping of a Minkowski space is a similarity

Proof for \(\text{dim}(M) > 2 \). I will use: if \(\phi \) is a conformal transformation of \(F \), then it is a conformal transformation of \(g_F \). Moreover, if \(\phi \) is a conformal transformation of \(F \) and similarity of \(g_F \), then it is a similarity of \(F \).

We consider the metric \(g_F \). It is Euclidean; w.l.o.g. we think that \(g_F = dx_1^2 + \ldots + dx_n^2 \).

Then, by the classical Liouville Theorem 1850 (and this is the additional Riemannian information), \(\phi \) is as we want or a Möbius transformation, i.e., a composition of a similarity and an inversion.
Proof of: Every conformal mapping of a Minkowski space is a similarity

Proof for \(\text{dim}(M) > 2 \). I will use: if \(\phi \) is a conformal transformation of \(F \), then it is a conformal transformation of \(g_F \). Moreover, if \(\phi \) is a conformal transformation of \(F \) and similarity of \(g_F \), then it is a similarity of \(F \).

We consider the metric \(g_F \). It is Euclidean; w.l.o.g. we think that \(g_F = dx_1^2 + ... + dx_n^2 \).

Then, by the classical Liouville Theorem 1850 (and this is the additional Riemannian information), \(\phi \) is as we want or a Möbius transformation, i.e., a composition of of a similarity and an inversion. We thus only need to prove that \textit{a composition of of a similarity an inversion cannot be a conformal map of some non euclidean Minkowski norm on } \(R^n \), which is an easy exercise.
Proof of: Every conformal mapping of a Minkowski space is a similarity

Proof for $\text{dim}(M) > 2$. I will use: if ϕ is a conformal transformation of F, then it is a conformal transformation of g_F. Moreover, if ϕ is a conformal transformation of F and similarity of g_F, then it is a similarity of F.

We consider the metric g_F. It is Euclidean; w.l.o.g. we think that $g_F = dx_1^2 + ... + dx_n^2$.

Then, by the classical Liouville Theorem 1850 (and this is the additional Riemannian information), ϕ is as we want or a Möbius transformation, i.e., a composition of a similarity and an inversion. We thus only need to prove that a composition of a similarity an inversion cannot be a conformal map of some non euclidean Minkowski norm on \mathbb{R}^n, which is an easy exercise.

The differential of the inversion at every point of the sphere is the reflection with respect to the tangent line to the sphere. The only convex body invariant with respect to all such reflection is the standard ball.
Proof of: Every conformal mapping of a Minkowski space is a similarity

Proof for $\text{dim}(M) > 2$. I will use: if ϕ is a conformal transformation of F, then it is a conformal transformation of g_F. Moreover, if ϕ is a conformal transformation of F and similarity of g_F, then it is a similarity of F.

We consider the metric g_F. It is Euclidean; w.l.o.g. we think that $g_F = dx_1^2 + ... + dx_n^2$.

Then, by the classical Liouville Theorem 1850 (and this is the additional Riemannian information), ϕ is as we want or a Möbius transformation, i.e., a composition of of a similarity and an inversion. We thus only need to prove that a composition of of a similarity an inversion cannot be a conformal map of some non Euclidean Minkowski norm on \mathbb{R}^n, which is an easy exercise.

The differential of the inversion at every point of the sphere is the reflection with respect to the tangent line to the sphere. The only convex body invariant with respect to all such reflection is the standard ball.
Conformally flat compact Finsler Manifolds

Def. A metric F is conformally flat, if locally, in a neighborhood of every point, it is conformally Minkowski: $F(x, \xi) = \lambda(x) \cdot F_0(\xi)$.
Conformally flat compact Finsler Manifolds

Def. A metric F is **conformally flat**, if locally, in a neighborhood of every point, it is conformally Minkowski: $F(x, \xi) = \lambda(x) \cdot F_0(\xi)$.

Corollary. Any smooth connected compact without boundary conformally flat non Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds.
Def. A metric F is conformally flat, if locally, in a neighborhood of every point, it is conformally Minkowski: $F(x, \xi) = \lambda(x) \cdot F_0(\xi)$.

Corollary. Any smooth connected compact without boundary conformally flat non Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus T^n or by $S^{n-1} \times S^1$.
Def. A metric \(F \) is **conformally flat**, if locally, in a neighborhood of every point, it is conformally Minkowski: \(F(x, \xi) = \lambda(x) \cdot F_0(\xi) \).

Corollary. Any smooth connected compact without boundary conformally flat non Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \(T^n \) or by \(S^{n-1} \times S^1 \).

Proof. Assuming \(M \) to be non Riemannian, it follows from Theorem from the previous slide that these changes of coordinates are euclidean similarities.
Conformally flat compact Finsler Manifolds

Def. A metric F is **conformally flat**, if locally, in a neighborhood of every point, it is conformally Minkowski: $F(x, \xi) = \lambda(x) \cdot F_0(\xi)$.

Corollary. Any smooth connected compact without boundary conformally flat non Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus T^n or by $S^{n-1} \times S^1$.

Proof. Assuming M to be non Riemannian, it follows from Theorem from the previous slide that these changes of coordinates are euclidean similarities. The manifold M carries therefore a similarity structure.
Conformally flat compact Finsler Manifolds

Def. A metric F is conformally flat, if locally, in a neighborhood of every point, it is conformally Minkowski: $F(x, \xi) = \lambda(x) \cdot F_0(\xi)$.

Corollary. Any smooth connected compact without boundary conformally flat non Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus T^n or by $S^{n-1} \times S^1$.

Proof. Assuming M to be non Riemannian, it follows from Theorem from the previous slide that these changes of coordinates are euclidean similarities.

The manifold M carries therefore a similarity structure.

Compact manifolds with a similarity structure have been topologically classified by N. H. Kuiper (1950) and D. Fried (1980):

...
Conformally flat compact Finsler Manifolds

Def. A metric F is **conformally flat**, if locally, in a neighborhood of every point, it is conformally Minkowski: $F(x, \xi) = \lambda(x) \cdot F_0(\xi)$.

Corollary. Any smooth connected compact without boundary conformally flat non Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus T^n or by $S^{n-1} \times S^1$.

Proof. Assuming M to be non Riemannian, it follows from Theorem from the previous slide that these changes of coordinates are euclidean similarities.

The manifold M carries therefore a **similarity structure**.

Compact manifolds with a similarity structure have been topologically classified by N. H. Kuiper (1950) and D. Fried (1980): they are either Bieberbach manifolds (i.e. R^n/Γ, where Γ is some crystallographic group of R^n), or they are Hopf-manifolds i.e. compact quotients of $R^n \setminus \{0\} = S^{n-1} \times R_+$ by a group G which is a semi-direct product of an infinite cyclic group with a finite subgroup of $O(n+1)$.
Def. A C^1-map $f : (M, F) \to (M', F')$ is a *similarity* if there exists a constant $a > 0$, $a \neq 1$ (called the *dilation constant*) such that $F(f(x), df_x(\xi)) = a \cdot F(x, \xi)$ for all $(x, \xi) \in TM$.
Def. A C^1-map $f : (M, F) \rightarrow (M', F')$ is a similarity if there exists a constant $a > 0$, $a \neq 1$ (called the dilation constant) such that $F(f(x), df_x(\xi)) = a \cdot F(x, \xi)$ for all $(x, \xi) \in TM$.

Theorem. Let (M, F) be a forward complete connected C^0-Finsler manifold (the manifold M is of class C^1, the metric F is C^0). If there exists a non isometric self-similarity $f : M \rightarrow M$ of class C^1, then (M, F) is a Minkowski space.
Finsler spaces with a non trivial self-similarity

Def. A C^1-map $f : (M, F) \to (M', F')$ is a *similarity* if there exists a constant $a > 0$, $a \neq 1$ (called the *dilation constant*) such that

$$F(f(x), df_x(\xi)) = a \cdot F(x, \xi)$$

for all $(x, \xi) \in TM$.

Theorem. Let (M, F) be a forward complete connected C^0-Finsler manifold (the manifold M is of class C^1, the metric F is C^0). If there exists a non isometric self-similarity $f : M \to M$ of class C^1, then (M, F) is a Minkowski space.

Remark. In the case of smooth Finsler manifolds, Theorem is known.
Finsler spaces with a non trivial self-similarity

Def. A C^1-map $f : (M, F) \to (M', F')$ is a *similarity* if there exists a constant $a > 0$, $a \neq 1$ (called the *dilation constant*) such that $F(f(x), df_x(\xi)) = a \cdot F(x, \xi)$ for all $(x, \xi) \in TM$.

Theorem. Let (M, F) be a forward complete connected C^0-Finsler manifold (the manifold M is of class C^1, the metric F is C^0). If there exists a non isometric self-similarity $f : M \to M$ of class C^1, then (M, F) is a Minkowski space.

Remark. In the case of smooth Finsler manifolds, Theorem is known. A first proof was given by Heil and Laugwitz in 1974, however R. L. Lovas, and J. Szilasi found a gap in the argument and gave a new proof in 2009.
In the proof, I will use:
In the proof, I will use:

(Fact 1.) if f is similarity for F, then it is a similarity for g_F;
In the proof, I will use:

(Fact 1.) if f is similarity for F, then it is a similarity for g_F;

(Fact 2.) A similarity of a forward-complete manifold always has a fixed point, i.e. x such that $f(x) = x$
In the proof, I will use:

(Fact 1.) if f is similarity for F, then it is a similarity for g_F;

(Fact 2.) A similarity of a forward-complete manifold always has a fixed point, i.e. x such that $f(x) = x$ (since for every x the sequence $x, f(x), f(f(x)), f(f(f(x))), ...$ is forward Cauchy and its limit is a fixed point.)
In the proof, I will use:

(Fact 1.) if f is similarity for F, then it is a similarity for g_F;

(Fact 2.) A similarity of a forward-complete manifold always has a fixed point, i.e. x such that $f(x) = x$ (since for every x the sequence $x, f(x), f(f(x)), f(f(f(x))), ...$ is forward Cauchy and its limit is a fixed point.

(Fact 3.) A Riemannian metric admitting similarity with a fixed point is flat. This is the additional statement from the Riemannian geometry
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of R^n.
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of R^n.
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of R^n. We consider two points $p, q \in R^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of R^n.

We consider two points $p, q \in R^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.

Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of \mathbb{R}^n.
We consider two points $p, q \in \mathbb{R}^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.
Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we known that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = Id$)
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of \mathbb{R}^n.

We consider two points $p, q \in \mathbb{R}^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.

Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we known that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = \text{Id}$)
Proof. By Fact 3, g is the standard Euclidean metric, and the similarity f is a similarity of R^n.

We consider two points $p, q \in R^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.

Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we known that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = Id$).

We consider the points $p, f(p) = C \cdot p, f \circ f(p) = C^2 \cdot p, \ldots$, converge 0.

\[p \quad q \quad 0 \]
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of \mathbb{R}^n.

We consider two points $p, q \in \mathbb{R}^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.

Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we known that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = \text{id}$)

We consider the points $p, f(p) = C \cdot p, f \circ f(p) = C^2 \cdot p, \ldots$, converge to 0.

The unit ball of the push-forward $f_k^*(F)$ of the metric at the point $f^k(p)$ are as on the picture;
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of \mathbb{R}^n.

We consider two points $p, q \in \mathbb{R}^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.

Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we know that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = Id$).

We consider the points $p, f(p) = C \cdot p, f \circ f(p) = C^2 \cdot p, \ldots$, converge to 0.

The unit ball of the push-forward $f^*_k(F)$ of the metric at the point $f^k(p)$ are as on the picture; therefore, the unit ball of $\frac{1}{C^k} f^*_k(F)$ at the point $f^k(p)$ is the parallel translation of the unit ball at the unit ball at the point p.
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of \mathbb{R}^n.

We consider two points $p, q \in \mathbb{R}^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.

Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we known that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = \text{Id}$)

We consider the points $p, f(p) = C \cdot p, f \circ f(p) = C^2 \cdot p$, ... , converge $\to 0$.

The unit ball of the push-forward $f^*_k(F)$ of the metric at the point $f^k(p)$ are as on the picture; therefore, the unit ball of $\frac{1}{C^k} f^*_k(F)$ at the point $f^k(p)$ is the parallel translation of the unit ball at the unit ball at the point p. But the unit ball of $\frac{1}{C^k} f^*_k(F)$ at $f^k(p)$ is the unit ball of F!
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of \mathbb{R}^n.

We consider two points $p, q \in \mathbb{R}^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.

Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we known that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = Id$)

We consider the points $p, f(p) = C \cdot p, f \circ f(p) = C^2 \cdot p, \ldots$, converge 0.

The unit ball of the push-forward $f^*_k(F)$ of the metric at the point $f^k(p)$ are as on the picture; therefore, the unit ball of $\frac{1}{C^k} f^*_k(F)$ at the point $f^k(p)$ is the parallel translation of the unit ball at the unit ball at the point p. But the unit ball of $\frac{1}{C^k} f^*_k(F)$ at $f^k(p)$ is the unit ball of F!

Thus, for every k the unit ball of F at $f_k(p)$ is the parallel translation of the unit ball of F at p.
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of \mathbb{R}^n.
We consider two points $p, q \in \mathbb{R}^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.
Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we known that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = \text{Id}$)
We consider the points $p, f(p) = C \cdot p, f \circ f(p) = C^2 \cdot p, \ldots$, converge 0.
The unit ball of the push-forward $f^k_*(F)$ of the metric at the point $f^k(p)$ are as on the picture; therefore, the unit ball of $\frac{1}{C^k} f^k_*(F)$ at the point $f^k(p)$ is the parallel translation of the unit ball at the point p. But the unit ball of $\frac{1}{C^k} f^k_*(F)$ at $f^k(p)$ is the unit ball of F!
Thus, for every k the unit ball of F at $f_k(p)$ is the parallel translation of the unit ball of F at p.
Sending $k \rightarrow \infty$, we obtain that the unit ball at $0 = \lim_{k \rightarrow \infty} f^k(p)$ is the parallel translation of the unit ball at p.
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of \mathbb{R}^n. We consider two points $p, q \in \mathbb{R}^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.

Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we known that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = \text{Id}$)

We consider the points $p, f(p) = C \cdot p, f \circ f(p) = C^2 \cdot p, \ldots$, converge to 0.

The unit ball of the push-forward $f^*_k(F)$ of the metric at the point $f^k(p)$ are as on the picture; therefore, the unit ball of $\frac{1}{C^k} f^*_k(F)$ at the point $f^k(p)$ is the parallel translation of the unit ball at the unit ball at the point p. But the unit ball of $\frac{1}{C^k} f^*_k(F)$ at $f^k(p)$ is the unit ball of F!

Thus, for every k the unit ball of F at $f_k(p)$ is the parallel translation of the unit ball of F at p.

Sending $k \to \infty$, we obtain that the unit ball at $0 = \lim_{k \to \infty} f^k(p)$ is the parallel translation of the unit ball at p. The same is true for q.
Proof. By Fact 3, g_F is the standard Euclidean metric, and the similarity f is a similarity of R^n. We consider two points $p, q \in R^n$. Our goal is to show that the unit ball in q is the parallel translation of the unit ball in p.

Let us first assume for simplicity that f is already a homothety $x \mapsto C \cdot x$ for a constant $1 > C > 0$ (we known that actually it is $\psi \circ \phi$, where ψ is an isometry and ϕ a homothety; I will explain on the next slide that w.l.o.g. $\psi = \text{Id}$)

We consider the points $p, f(p) = C \cdot p, f \circ f(p) = C^2 \cdot p, \ldots$, converge $\rightarrow 0$.

The unit ball of the push-forward $f^*_k(F)$ of the metric at the point $f^k(p)$ are as on the picture; therefore, the unit ball of $\frac{1}{C_k} f^*_k(F)$ at the point $f^k(p)$ is the parallel translation of the unit ball at the unit ball at the point p. But the unit ball of $\frac{1}{C_k} f^*_k(F)$ at $f^k(p)$ is the unit ball of F!

Thus, for every k the unit ball of F at $f_k(p)$ is the parallel translation of the unit ball of F at p.

Sending $k \rightarrow \infty$, we obtain that the unit ball at $0 = \lim_{k \rightarrow \infty} f^k(p)$ is the parallel translation of the unit ball at p. The same is true for q. Then, the unit ball at q is the parallel translation of the unit ball at p.

Why we can think that the similarity f is a homothety, and not the composition $\psi \circ \phi$, where $\psi \in O(n)$ is an isometry and ϕ is a homothety.
Why we can think that the similarity f is a homothety, and not the composition $\psi \circ \phi$, where $\psi \in O(n)$ is an isometry and ϕ is a homothety

Because the group $O(n)$ is compact.
Why we can think that the similarity f is a homothety, and not the composition $\psi \circ \phi$, where $\psi \in O(n)$ is an isometry and ϕ is a homothety

Because the group $O(n)$ is compact. Hence, any sequence of the form $\psi, \psi^2, \psi^3, \ldots$, has a subsequence converging to Id.
Why we can think that the similarity f is a homothety, and not the composition $\psi \circ \phi$, where $\psi \in O(n)$ is an isometry and ϕ is a homothety

Because the group $O(n)$ is compact. Hence, any sequence of the form $\psi, \psi^2, \psi^3, \ldots$, has a subsequence converging to Id. Thus, in the arguments on the previous slide we can take the subsequence $k \to \infty$ such that

$$
(\psi \circ \phi)^k \phi \circ \psi \equiv \psi \circ \phi \sim Id
$$

is “almost” ϕ^k, and the proof works.
Examples of conformal transformations and its full description
Examples of conformal transformations and its full description

(i) If \(\phi : M \rightarrow M \) is an isometry for \(F \), and \(\lambda : M \rightarrow R_{>0} \) is a function, then \(\phi \) is a conformal transformation of \(F_1 := \lambda \cdot F \).
Examples of conformal transformations and its full description

(i) If $\phi : M \to M$ is an isometry for F, and $\lambda : M \to R_{>0}$ is a function, then ϕ is a conformal transformation of $F_1 := \lambda \cdot F$.

(ii) Let F_m be a Minkowski metric on R^n. Then, the mapping $x \mapsto \text{const} \cdot x$ (for $\text{const} \neq 0$) is a conformal transformation. Moreover, it is also a conformal transformation of $F := \lambda \cdot F_m$. Moreover, if ψ is an isometry of F_m, then $\psi \circ \phi$ is a conformal transformation of every $F := \lambda \cdot F_m$.
Examples of conformal transformations and its full description

(i) If $\phi : M \to M$ is an isometry for F, and $\lambda : M \to R_{>0}$ is a function, then ϕ is a conformal transformation of $F_1 := \lambda \cdot F$.

(ii) Let F_m be a Minkowski metric on R^n. Then, the mapping $x \mapsto \text{const} \cdot x$ (for const $\neq 0$) is a conformal transformation. Moreover, it is also a conformal transformation of $F := \lambda \cdot F_m$. Moreover, if ψ is an isometry of F_m, then $\psi \circ \phi$ is a conformal transformation of every $F := \lambda \cdot F_m$.

(iii) Let g be the standard (Riemannian) metric on the standard sphere S^n. Then, the standard Möbius transformations of S^n are conformal transformations of every metric $F := \lambda \cdot g$.
Examples of conformal transformations and its full description

(i) If \(\phi : M \rightarrow M \) is an isometry for \(F \), and \(\lambda : M \rightarrow R_{>0} \) is a function, then \(\phi \) is a conformal transformation of \(F_1 := \lambda \cdot F \).

(ii) Let \(F_m \) be a Minkowski metric on \(R^n \). Then, the mapping \(x \mapsto \text{const} \cdot x \) (for \(\text{const} \neq 0 \)) is a conformal transformation. Moreover, it is also a conformal transformation of \(F := \lambda \cdot F_m \). Moreover, if \(\psi \) is an isometry of \(F_m \), then \(\psi \circ \phi \) is a conformal transformation of every \(F := \lambda \cdot F_m \).

(iii) Let \(g \) be the standard (Riemannian) metric on the standard sphere \(S^n \). Then, the standard Möbius transformations of \(S^n \) are conformal transformations of every metric \(F := \lambda \cdot g \).

Theorem (Finsler version of conformal Lichnerowicz conjecture).
Examples of conformal transformations and its full description

(i) If $\phi : M \to M$ is an isometry for F, and $\lambda : M \to \mathbb{R}_{>0}$ is a function, then ϕ is a conformal transformation of $F_1 := \lambda \cdot F$.

(ii) Let F_m be a Minkowski metric on \mathbb{R}^n. Then, the mapping $x \mapsto \text{const} \cdot x$ (for const $\neq 0$) is a conformal transformation. Moreover, it is also a conformal transformation of $F := \lambda \cdot F_m$. Moreover, if ψ is an isometry of F_m, then $\psi \circ \phi$ is a conformal transformation of every $F := \lambda \cdot F_m$.

(iii) Let g be the standard (Riemannian) metric on the standard sphere S^n. Then, the standard M"{o}bius transformations of S^n are conformal transformations of every metric $F := \lambda \cdot g$.

Theorem (Finsler version of conformal Lichnerowicz conjecture).
That's all:
Examples of conformal transformations and its full description

(i) If $\phi : M \to M$ is an isometry for F, and $\lambda : M \to \mathbb{R}_{>0}$ is a function, then ϕ is a conformal transformation of $F_1 := \lambda \cdot F$.

(ii) Let F_m be a Minkowski metric on \mathbb{R}^n. Then, the mapping $x \mapsto \text{const} \cdot x$ (for $\text{const} \neq 0$) is a conformal transformation. Moreover, it is also a conformal transformation of $F := \lambda \cdot F_m$. Moreover, if ψ is an isometry of F_m, then $\psi \circ \phi$ is a conformal transformation of every $F := \lambda \cdot F_m$.

(iii) Let g be the standard (Riemannian) metric on the standard sphere S^n. Then, the standard Möbius transformations of S^n are conformal transformations of every metric $F := \lambda \cdot g$.

Theorem (Finsler version of conformal Lichnerowicz conjecture). That’s all: Let ϕ be a conformal transformation of a connected (smooth) Finsler manifold $(M^{n \geq 2}, F)$. Then (M, F) and ϕ are as in Examples (i, ii, iii) above.
Even in the Riemannian case, Theorem above is nontrivial
Even in the Riemannian case, Theorem above is nontrivial

Riemannian theorem (proved before by Alekseevsky 1971, Schoen 1995, (Lelong)-Ferrand 1996) Let \(\phi \) be a conformal transformation of a connected RIEMANNIAN manifold \((M^{n \geq 2}, g)\). Then for a certain \(\lambda : M \to R \) one of the following conditions holds

(a) \(\phi \) is an isometry of \(\lambda \cdot g \), or
(b) \((M, \lambda \cdot g)\) is \((R^n, g_{\text{flat}})\),
(c) or \((S^n, g_{\text{round}})\).
Even in the Riemannian case, Theorem above is nontrivial

Riemannian theorem (proved before by Alekseevsky 1971, Schoen 1995, (Lelong)-Ferrand 1996) Let ϕ be a conformal transformation of a connected RIEMANNIAN manifold $(M^{n\geq 2}, g)$. Then for a certain $\lambda : M \to R$ one of the following conditions holds

(a) ϕ is an isometry of $\lambda \cdot g$, or

(b) $(M, \lambda \cdot g)$ is (R^n, g_{flat}),

(c) or (S^n, g_{round}).

The story: This statement is known as 	extit{conformal Lichnerowicz conjecture} ~ 1960
Even in the Riemannian case, Theorem above is nontrivial

Riemannian theorem (proved before by Alekseevsky 1971, Schoen 1995, (Lelong)-Ferrand 1996) Let ϕ be a conformal transformation of a connected RIEMANNIAN manifold $(M^{n\geq 2}, g)$. Then for a certain $\lambda : M \to R$ one of the following conditions holds

(a) ϕ is an isometry of $\lambda \cdot g$, or

(b) $(M, \lambda \cdot g)$ is (R^n, g_{flat}),

(c) or (S^n, g_{round}).

The story: This statement is known as conformal Lichnerowicz conjecture ~ 1960

1970: Obata proved it under the assumption that M is closed.
Even in the Riemannian case, Theorem above is nontrivial
Riemannian theorem (proved before by Alekseevsky 1971,
Schoen 1995, (Lelong)-Ferrand 1996) Let ϕ be a conformal
transformation of a connected Riemannian manifold $(M^{n \geq 2}, g)$. Then
for a certain $\lambda : M \to R$ one of the following conditions holds

(a) ϕ is an isometry of $\lambda \cdot g$, or

(b) $(M, \lambda \cdot g)$ is (R^n, g_{flat}),

(c) or (S^n, g_{round}).

The story: This statement is known as conformal Lichnerowicz
conjecture ~ 1960
1970: Obata proved it under the assumption that M is closed.
1971: Alekseevsky proved it for all manifolds; later many mathematicians
(for example Yoshimatsu 1976 and Gutschera 1995 (basing on example
of Ziller)) claimed the existence of flaws in the proof
Even in the Riemannian case, Theorem above is nontrivial. Riemannian theorem (proved before by Alekseevsky 1971, Schoen 1995, (Lelong)-Ferrand 1996) Let ϕ be a conformal transformation of a connected Riemannian manifold $(M^{n \geq 2}, g)$. Then for a certain $\lambda : M \to \mathbb{R}$ one of the following conditions holds:

(a) ϕ is an isometry of $\lambda \cdot g$, or

(b) $(M, \lambda \cdot g)$ is $(\mathbb{R}^n, g_{\text{flat}})$,

(c) or (S^n, g_{round}).

The story: This statement is known as conformal Lichnerowicz conjecture \sim 1960

1970: Obata proved it under the assumption that M is closed.
1971: Alekseevsky proved it for all manifolds; later many mathematicians (for example Yoshimatsu 1976 and Gutschera 1995 (basing on example of Ziller)) claimed the existence of flaws in the proof
Even in the Riemannian case, Theorem above is nontrivial

Riemannian theorem (proved before by Alekseevsky 1971,
Schoen 1995, (Lelong)-Ferrand 1996) Let \(\phi \) be a conformal
transformation of a connected \textsc{riemannian} manifold \((M^{\geq 2}, g)\). Then
for a certain \(\lambda : M \rightarrow R \) one of the following conditions holds

(a) \(\phi \) is an isometry of \(\lambda \cdot g \), or
(b) \((M, \lambda \cdot g)\) is \((R^n, g_{\text{flat}})\),
(c) or \((S^n, g_{\text{round}})\).

The story: This statement is known as conformal\textsc{ Lichnerowicz conjecture} \(~1960\)

1970: Obata proved it under the assumption that \(M \) is closed.
1971: Alekseevsky proved it for all manifolds; later many mathematicians
(for example Yoshimatsu 1976 amd Gutschera 1995 (basing on example
of Ziller)) claimed the existence of flaws in the proof
1974–1996: (Lelong)-Ferrand gave another proof using her theory of
quasiconformal mappings
1995: Schoen: New proof using completely new ideas
Even in the Riemannian case, Theorem above is nontrivial

Riemannian theorem (proved before by Alekseevsky 1971, Schoen 1995, (Lelong)-Ferrand 1996) Let \(\phi \) be a conformal transformation of a connected Riemannian manifold \((M^{n \geq 2}, g)\). Then for a certain \(\lambda : M \rightarrow \mathbb{R} \) one of the following conditions holds

(a) \(\phi \) is an isometry of \(\lambda \cdot g \), or
(b) \((M, \lambda \cdot g)\) is \((\mathbb{R}^n, g_{\text{flat}})\),
(c) or \((S^n, g_{\text{round}})\).

The story: This statement is known as conformal Lichnerowicz conjecture \(\sim 1960\)

1970: Obata proved it under the assumption that \(M \) is closed.

1971: Alekseevsky proved it for all manifolds; later many mathematicians (for example Yoshimatsu 1976 amd Gutschera 1995 (basing on example of Ziller)) claimed the existence of flaws in the proof

1974–1996: (Lelong)-Ferrand gave another proof using her theory of quasiconformal mappings

1995: Schoen: New proof using completely new ideas

Remark. In the pseudo-Riemannian case, the analog of Theorem is wrong (a counterexample in signature \((2, n - 1)\) of Frances). In the Lorenz signature, the question is still open.
Proof
Proof

Let ϕ is a conformal transformation of F. Then, it is a conformal transformation of g_F. By the Riemannian version of Main Theorem, the following cases are possible:
Let ϕ is a conformal transformation of F. Then, it is a conformal transformation of g_F. By the Riemannian version of Main Theorem, the following cases are possible:

Trivial case: ϕ is an isometry of a certain $\lambda \cdot g_F$. Then, it is an isometry of $\lambda^2 \cdot F$.

Case R^n: After the multiplication of F by an appropriate function, g_F is the standard Euclidean metric, and ϕ is a similarity of g_F.
Proof

Let ϕ is a conformal transformation of F. Then, it is a conformal transformation of g_F. By the Riemannian version of Main Theorem, the following cases are possible:

(Trivial case): ϕ is an isometry of a certain $\lambda \cdot g_F$. Then, it is an isometry of $\lambda^2 \cdot F$.

(Case R^n): After the multiplication of F by an appropriate function, g_F is the standard Euclidean metric, and ϕ is a similarity of g_F. Then, as we have shown above, F is Minkowski.

(Case S^n): After the multiplication F by an appropriate function, g_F is the standard metric on the sphere, and ϕ is a möbius transformation of the sphere.
(Case S^n): After the multiplication F be an appropriate function, g_F is the standard “round” (Riemannian) metric on the sphere.
(Case S^n): After the multiplication F be an appropriate function, g_F is the standard “round” (Riemannian) metric on the sphere. Conformal transformation of S^n were described by J. Liouville 1850 in dim $n = 2$, and by S. Lie 1872.
(Case S^n): After the multiplication F be an appropriate function, g_F is the standard “round” (Riemannian) metric on the sphere
Conformal transformation of S^n were described by J. Liouville 1850 in dim $n = 2$, and by S. Lie 1872. For the sphere, the analog of the picture (a) for the conformal transformation (which are homotheties) of R^n is the picture (b).
(Case S^n): After the multiplication F be an appropriate function, g_F is the standard “round” (Riemannian) metric on the sphere. Conformal transformation of S^n were described by J. Liouville 1850 in dim $n = 2$, and by S. Lie 1872. For the sphere, the analog of the picture (a) for the conformal transformation (which are homotheties) of R^n is the picture (b).

One can generalize our proof for R^n to the case S^n (the principal observation that sequence of the points $p, \phi(p), \phi^2(p), ...$ converges to a fixed point is also true on the sphere; the analysis is slightly more complicated).
Solution of Deng-Hou conjecture
Solution of Deng-Hou conjecture

Def. The Finsler manifold \((M, F)\) is called *locally symmetric*, if for every point \(x \in M\) there exists \(r = r(x) > 0\) (called the symmetry radius) and an isometry \(\tilde{I}_x : B_r(x) \to B_r(x)\) (called the reflexion at \(x\)) such that \(\tilde{I}_x(x) = x\) and \(d_x(\tilde{I}_x) = -\text{id} : T_xM \to T_xM\).
Solution of Deng-Hou conjecture

Def. The Finsler manifold \((M, F)\) is called *locally symmetric*, if for every point \(x \in M\) there exists \(r = r(x) > 0\) (called the symmetry radius) and an isometry \(\tilde{I}_x : B_r(x) \to B_r(x)\) (called the *reflexion* at \(x\)) such that \(\tilde{I}_x(x) = x\) and \(d_x(\tilde{I}_x) = -\text{id} : T_x M \to T_x M\).

Def. A Finsler metric is *Berwald*, if there exists a symmetric affine connection \(\Gamma = (\Gamma^i_{jk})\) such that the parallel transport with respect to this connection preserves the function \(F\).
Solution of Deng-Hou conjecture

Def. The Finsler manifold (M, F) is called *locally symmetric*, if for every point $x \in M$ there exists $r = r(x) > 0$ (called the symmetry radius) and an isometry $\tilde{I}_x : B_r(x) \to B_r(x)$ (called the *reflexion* at x) such that $\tilde{I}_x(x) = x$ and $d_x(\tilde{I}_x) = -\text{id} : T_x M \to T_x M$.

Def. A Finsler metric is *Berwald*, if there exists a symmetric affine connection $\Gamma = (\Gamma^i_{jk})$ such that the parallel transport with respect to this connection preserves the function F.

Theorem. Let (M, F) be a C^2-smooth Finsler manifold. If (M, F) is locally symmetric, then F is Berwald.
Solution of Deng-Hou conjecture

Def. The Finsler manifold \((M, F)\) is called *locally symmetric*, if for every point \(x \in M\) there exists \(r = r(x) > 0\) (called the symmetry radius) and an isometry \(\tilde{I}_x : B_r(x) \to B_r(x)\) (called the reflexion at \(x\)) such that \(\tilde{I}_x(x) = x\) and \(d_x(\tilde{I}_x) = -\text{id} : T_x M \to T_x M\).

Def. A Finsler metric is *Berwald*, if there exists a symmetric affine connection \(\Gamma = (\Gamma^i_{jk})\) such that the parallel transport with respect to this connection preserves the function \(F\).

Theorem. Let \((M, F)\) be a \(C^2\)-smooth Finsler manifold. If \((M, F)\) is locally symmetric, then \(F\) is Berwald.

Remark. This theorem answers positively a conjecture of Deng-Hou 2009, where it has been proved for globally symmetric spaces.
Solution of Deng-Hou conjecture

Def. The Finsler manifold \((M, F)\) is called *locally symmetric*, if for every point \(x \in M\) there exists \(r = r(x) > 0\) (called the symmetry radius) and an isometry \(\tilde{I}_x : B_r(x) \to B_r(x)\) (called the *reflexion* at \(x\)) such that \(\tilde{I}_x(x) = x\) and \(d_x(\tilde{I}_x) = -\text{id} : T_xM \to T_xM\).

Def. A Finsler metric is *Berwald*, if there exists a symmetric affine connection \(\Gamma = (\Gamma^i_{jk})\) such that the parallel transport with respect to this connection preserves the function \(F\).

Theorem. Let \((M, F)\) be a \(C^2\)-smooth Finsler manifold. If \((M, F)\) is locally symmetric, then \(F\) is Berwald.

Remark. This theorem answers positively a conjecture of Deng-Hou 2009, where it has been proved for globally symmetric spaces.

Remark. Locally symmetric Berwald metrics are easy to construct — take the Levi-Civita connection \(\nabla\) of a locally symmetric Riemannian manifolds, choose a reversible norm at one \(T_xM\) invariant with respect to the holonomy group, and extend the norm to all points \(y \in M\) with the help of parallel transport. The obtained Finsler metric is then automatically invariant w.r.t. the reflections.
Solution of Deng-Hou conjecture

Def. The Finsler manifold \((M, F)\) is called *locally symmetric*, if for every point \(x \in M\) there exists \(r = r(x) > 0\) (called the symmetry radius) and an isometry \(\tilde{I}_x : B_r(x) \rightarrow B_r(x)\) (called the *reflexion* at \(x\)) such that \(\tilde{I}_x(x) = x\) and \(d_x(\tilde{I}_x) = -\text{id} : T_xM \rightarrow T_xM\).

Def. A Finsler metric is *Berwald*, if there exists a symmetric affine connection \(\Gamma = (\Gamma^i_{jk})\) such that the parallel transport with respect to this connection preserves the function \(F\).

Theorem. Let \((M, F)\) be a \(C^2\)-smooth Finsler manifold. If \((M, F)\) is locally symmetric, then \(F\) is Berwald.

Remark. This theorem answers positively a conjecture of Deng-Hou 2009, where it has been proved for globally symmetric spaces.

Remark. Locally symmetric Berwald metrics are easy to construct — take the Levi-Civita connection \(\nabla\) of a locally symmetric Riemannian manifolds, choose a reversible norm at one \(T_xM\) invariant with respect to the holonomy group, and extend the norm to all points \(y \in M\) with the help of parallel transport. The obtained Finsler metric is then automatically invariant w.r.t. the reflections.

Corollary. Every locally symmetric \(C^2\)-smooth Finsler manifold is locally isometric to a globally symmetric Finsler space.
Proof under the additional assumption that the symmetry radius is locally bounded from zero.
Proof under the additional assumption that the symmetry radius is locally bounded from zero.

The Binet-Legendge metric is a locally symmetric metric. Let us now show that the metrics g_F and F are affinely equivalent, that is, for every arclength parameterised F-geodesic $\tilde{\gamma}$ there exists a nonzero constant c such that $\tilde{\gamma}(c \cdot t)$ is an arclength parameterised g_F-geodesic.
The Binet-Legendre metric is a locally symmetric metric. Let us now show that the metrics g_F and F are affinely equivalent, that is, for every arclength parameterised F-geodesic $\tilde{\gamma}$ there exists a nonzero constant c such that $\tilde{\gamma}(c \cdot t)$ is an arclength parameterised g_F-geodesic.
Proof under the additional assumption that the symmetry radius is locally bounded from zero.

The Binet-Legendge metric is a locally symmetric metric. Let us now show that the metrics g_F and F are affinely equivalent, that is, for every arclength parameterised F-geodesic $\tilde{\gamma}$ there exists a nonzero constant c such that $\tilde{\gamma}(c \cdot t)$ is an arclength parameterised g_F-geodesic.

It is sufficient to show that for every sufficiently close points $x, y \in M$ the midpoints of the geodesic segments γ and $\tilde{\gamma}$ in the metrics g_F and F connecting the points x and y coincide.

Indeed, if it is true, then the geodesics γ and $\tilde{\gamma}$ coincide on its dense subset implying they coincide.
Take a short F-geodesic $\tilde{\gamma} : [-\tilde{\epsilon}, \tilde{\epsilon}] \to M$.
Take a short F-geodesic $\tilde{\gamma} : [−\tilde{\varepsilon}, \tilde{\varepsilon}] \to M$. Let $\gamma : [−\varepsilon, \varepsilon] \to W$ be the unique shortest g_F-geodesic such that $\gamma(−\varepsilon) = \tilde{\gamma}(−\tilde{\varepsilon})$ and $\gamma(\varepsilon) = \tilde{\gamma}(\tilde{\varepsilon})$.
Take a short F-geodesic $\tilde{\gamma} : [-\tilde{\varepsilon}, \tilde{\varepsilon}] \to M$. Let $\gamma : [-\varepsilon, \varepsilon] \to W$ be the unique shortest g_F-geodesic such that $\gamma(-\varepsilon) = \tilde{\gamma}(-\tilde{\varepsilon})$ and $\gamma(\varepsilon) = \tilde{\gamma}(\tilde{\varepsilon})$. Let $x = \tilde{\gamma}(0)$ be the midpoint of $\tilde{\gamma}$ and let I_x be the g_F reflexion centered at x.
Take a short F-geodesic $\tilde{\gamma} : [-\tilde{\varepsilon}, \tilde{\varepsilon}] \to M$. Let $\gamma : [-\varepsilon, \varepsilon] \to W$ be the unique shortest g_F-geodesic such that $\gamma(-\varepsilon) = \tilde{\gamma}(-\tilde{\varepsilon})$ and $\gamma(\varepsilon) = \tilde{\gamma}(\tilde{\varepsilon})$. Let $x = \tilde{\gamma}(0)$ be the midpoint of $\tilde{\gamma}$ and let l_x be the g_F reflection centered at x. Then, $l_x(\gamma(-\varepsilon)) = l_x(\tilde{\gamma}(-\tilde{\varepsilon})) = \tilde{\gamma}(\tilde{\varepsilon}) = \gamma(\varepsilon)$ implying $l_x(\gamma(0)) = \gamma(0)$.
Take a short F-geodesic $\tilde{\gamma} : [-\tilde{\varepsilon}, \tilde{\varepsilon}] \to M$. Let $\gamma : [-\varepsilon, \varepsilon] \to W$ be the unique shortest g_F-geodesic such that $\gamma(-\varepsilon) = \tilde{\gamma}(-\tilde{\varepsilon})$ and $\gamma(\varepsilon) = \tilde{\gamma}(\tilde{\varepsilon})$. Let $x = \tilde{\gamma}(0)$ be the midpoint of $\tilde{\gamma}$ and let I_x be the g_F reflection centered at x. Then, $I_x(\gamma(-\varepsilon)) = I_x(\tilde{\gamma}(-\tilde{\varepsilon})) = \tilde{\gamma}(\tilde{\varepsilon}) = \gamma(\varepsilon)$ implying $I_x(\gamma(0)) = \gamma(0)$. By uniqueness of the fixed point of I_x, it follows that $\gamma(0) = x = \tilde{\gamma}(0)$.
Take a short F-geodesic $\tilde{\gamma} : [-\tilde{\varepsilon}, \tilde{\varepsilon}] \to M$. Let $\gamma : [-\varepsilon, \varepsilon] \to W$ be the unique shortest g_F-geodesic such that $\gamma(-\varepsilon) = \tilde{\gamma}(-\tilde{\varepsilon})$ and $\gamma(\varepsilon) = \tilde{\gamma}(\tilde{\varepsilon})$. Let $x = \tilde{\gamma}(0)$ be the midpoint of $\tilde{\gamma}$ and let I_x be the g_F reflexion centered at x. Then, $I_x(\gamma(-\varepsilon)) = I_x(\tilde{\gamma}(-\tilde{\varepsilon})) = \tilde{\gamma}(\tilde{\varepsilon}) = \gamma(\varepsilon)$ implying $I_x(\gamma(0)) = \gamma(0)$. By uniqueness of the fixed point of I_x, it follows that $\gamma(0) = x = \tilde{\gamma}(0)$. Thus, all geodesic segments γ and $\tilde{\gamma}$ coincide after the affine reparameterization By the classical result of Chern-Shen, the metric F is Berwald.
Conformal invariants of Finsler metrics

Def. Conformal invariants of (M, F) are functions on M canonically constructed by F and invariant w.r.t. conformal change $F \rightarrow \lambda(x) \cdot F$. In the Riemannian case, it is hard to construct them. In the Finsler case, the metric g_F helps:
Conformal invariants of Finsler metrics

Def. Conformal invariants of \((M, F)\) are functions on \(M\) canonically constructed by \(F\) and invariant w.r.t. conformal change \(F \rightarrow \lambda(x) \cdot F\).

In the Riemannian case, it is hard to construct them. In the Finsler case, the metric \(g_F\) helps:

We define conformal invariants via the Steiner Formula:

\[
\text{Vol}(B_F + t \cdot B) = \sum_{j=0}^{n} \binom{n}{j} W_j(B_F) t^j,
\]

where \(B_F\) is the 1-ball in \(F\), \(B\) is the 1-Ball in \(g_F\), \(\text{Vol}\) is in \(g_F\), and everything is done in one tangent space.

These numbers \(W_j(x)\) depend only on \(F|_{T_x M}\) and are the same for \(F\) and \(\lambda(x) \cdot F\)!!!
Conformal invariants of Finsler metrics

Def. Conformal invariants of \((M, F)\) are functions on \(M\) canonically constructed by \(F\) and invariant w.r.t. conformal change \(F \to \lambda(x) \cdot F\).

In the Riemannian case, it is hard to construct them. In the Finsler case, the metric \(g_F\) helps:

We define conformal invariants via the Steiner Formula:

\[
Vol(B_F + t \cdot B) = \sum_{j=0}^{n} \binom{n}{j} W_j(B_F) t^j,
\]

where \(B_F\) is the 1-ball in \(F\), \(B\) is the 1-Ball in \(g_F\), \(Vol\) is in \(g_F\), and everything is done in one tangent space.

These numbers \(W_j(x)\) depend only on \(F_{|T_x M}\) and are the same for \(F\) and \(\lambda(x) \cdot F\)!!!!

One can construct two more invariants:

\[
M(x) = \max_{\xi \in T_x M} \frac{F(x, \xi)}{\sqrt{g(\xi, \xi)}} \quad \text{and} \quad m(x) = \min_{\xi \in T_x M} \frac{F(x, \xi)}{\sqrt{g(\xi, \xi)}}.
\]

Thus, in the generic case we obtain \(n + 2\) “easy to calculate” scalar invariants.
What to do next: possible applications in sciences
What to do next: possible applications in sciences

Finsler geometers always emphasize possible applications of Finsler metrics in geometry – certain phenomena in sciences (for example, light prolongation in crystals or certain processes in organic cells) can be described with the help of Finsler metrics.
What to do next: possible applications in sciences

Finsler geometers always emphasis possible applications of Finsler metrics in geometry – certain phenomena in sciences (for example light prolongation in crystals or certain processes in organic cells) can be described with the help of Finsler metrics.

Unfortunately, the “standard” Finsler methods appeared to be too complicated to be used.
Finsler geometers always emphasize possible applications of Finsler metrics in geometry – certain phenomena in sciences (for example, light prolongation in crystals or certain processes in organic cells) can be described with the help of Finsler metrics.

Unfortunately, the “standard” Finsler methods appeared to be too complicated to be used.

We suggest to replace the Finsler metric F by a Riemannian metric g_F, and then to analyze it. Of course, we lose a lot of information, but get an object which is easier to investigate.
What to do next: possible applications in sciences

Finsler geometers always emphasis possible applications of Finsler metrics in geometry – certain phenomena in sciences (for examples light prolongation in cristalls or certain processes in organic cells) can be described with the help of Finsler metrics.

Unfortunately, the “standard” Finsler methods appeared to be too complicated to be used.

We suggest to replace the Finsler metric F by a Riemannian metric g_F, and then to analyze it. Of cause, we loose a lot of information, but get an object which is easier to investigate.

Note that we even do not require that the “unit ball” is smooth and convex.
When this approach should be used? And how?

- One should have something that could be a Finlser metric – for example a field of convex bodies.
- In the best case one should not have a background Riemannian or Euclidean metric.
- The construction $F \to g_F$ gives us an invariant objects whose properties are much simple than of the initial object and which can be studied by the Riemannian mashinary.
Thank you for your attention!!!