The boundary value problem for a rigidly rotating disc of charged dust

Martin Breithaupt

Research Training Group "Quantum and Gravitational Fields"

24.03.2012
Table of Contents

1 Motivation
Table of Contents

1 Motivation

2 Basic concepts
 - The Einstein-Maxwell equations
 - The Model of Matter
 - Metric and Four-potential
 - Wave and Field equations
 - The Co-rotating frame
The boundary value problem for a rigidly rotating disc of charged dust

Table of Contents

1 Motivation

2 Basic concepts
 • The Einstein-Maxwell equations
 • The Model of Matter
 • Metric and Four-potential
 • Wave and Field equations
 • The Co-rotating frame

3 The boundary conditions
 • The disc case
 • Calculation
 • Physical interpretation
Solution to the rigidly rotating disc of dust
[Neugebauer and Meinel, 1993]
Solution to the rigidly rotating disc of dust
[Neugebauer and Meinel, 1993]
- continuous black hole limit (extreme Kerr metric)
Solution to the rigidly rotating disc of dust
[Neugebauer and Meinel, 1993]
- continuous black hole limit (extreme Kerr metric)

Electrically counterpoised dust (ECD) configurations
(Papapetrou-Majundar class)
- static solutions (including charged discs)
- continuous black hole limit (extreme Reissner-Nordström metric)
[Meinel and Hütten, 2011]
Solution to the rigidly rotating disc of dust
[Neugebauer and Meinel, 1993]
- continuous black hole limit (extreme Kerr metric)

Electrically counterpoised dust (ECD) configurations (Papapetrou-Majundar class)
- static solutions (including charged discs)
- continuous black hole limit (extreme Reissner-Nordström metric)
 [Meinel and Hütten, 2011]

Getting an new exact solution with a good physical interpretation
Solution to the rigidly rotating disc of dust [Neugebauer and Meinel, 1993]
- continuous black hole limit (extreme Kerr metric)

Electrically counterpoised dust (ECD) configurations (Papapetrou-Majundar class)
- static solutions (including charged discs)
- continuous black hole limit (extreme Reissner-Nordström metric) [Meinel and Hütten, 2011]

Getting an new exact solution with a good physical interpretation maybe with a continuous black hole limit (extreme Kerr-Newmann metric)
The boundary value problem for a rigidly rotating disc of charged dust

Motivation

Conventions

\[\text{Metrik} \]

\[g_{ab} \]: Signatur \((+,+,+,-)\)

Indices \((a, b, \ldots)\): run from 1 to 4

\[\nabla \]: Operator: used like in cylindrical coordinates

Units: \(G = c = 1\) combined with Gauss system

Martin Breithaupt
Research Training Group "Quantum and Gravitational Fields"
Conventions

- **Metrik** g_{ab}: Signatur $(+,+,+,−)$
Conventions

- Metrik g_{ab}: Signatur $(+, +, +, -)$
- Indices $(a, b, ...)$: run from 1 to 4
The boundary value problem for a rigidly rotating disc of charged dust

Motivation

Conventions

- **Metrik g_{ab}**: Signatur $(+, +, +, -)$
- **Indices $(a, b, ...)$**: run from 1 to 4
- ∇-Operator: used like in flat cylindrical coordinates
Conventions

- **Metrik** g_{ab}: Signatur $(+, +, +, -)$
- **Indices** $(a, b, ...)$: run from 1 to 4
- **∇-Operator**: used like in flat cylindrical coordinates
- **Units**: $G = c = 1$ combined with Gauss system
Table of Contents

1 Motivation

2 Basic concepts
 • The Einstein-Maxwell equations
 • The Model of Matter
 • Metric and Four-potential
 • Wave and Field equations
 • The Corotating frame

3 The boundary conditions
 • The disc case
 • Calculation
 • Physical interpretation
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Einstein-Maxwell equations

Einstein equations:

\[R_{ab} - \frac{1}{2} R g_{ab} = 8\pi T_{ab} \]

Maxwell equations:

\[F_{[ab};c] = 0 \] and \[F_{ab};b = 4\pi j_a \]

Martin Breithaupt
Research Training Group "Quantum and Gravitational Fields"
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Einstein-Maxwell equations

- **Einstein equations:**

 \[R_{ab} - \frac{1}{2} R g_{ab} = 8\pi T_{ab} \]
 \[(1) \]

- **Maxwell equations:**

 \[F_{[ab;c]} = 0 \quad \text{and} \quad F^{ab} ;_b = 4\pi j^a \]
 \[(2) \]
Basic concepts

The Einstein-Maxwell equations

Field tensor F_{ab} is antisymmetric

Wave equations:

$$1\sqrt{-g}\left[\sqrt{-g} g^{am} g^{bn}\left(A^n,m - A^m,n\right)\right]_{,b} = 4\pi j^a$$

Continuity equation:

$$j^a;_a = 0$$

Lorentz gauge:

$$A^a;_a = 1\sqrt{-g}\left(A^a\sqrt{-g}\right)_{,a} = 0$$

Four-potential A^a:

$$F_{ab} = A_{b;_a} - A_{a;_b} = A_{b,a} - A_{a,b}$$
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts
The Einstein-Maxwell equations

- **Four-potential** A^a:

 \[F_{ab} = A_{b;a} - A_{a;b} = A_{b,a} - A_{a,b} \]
 \hspace{1cm} (3)

- **Field tensor** F_{ab} is antisymmetric
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Einstein-Maxwell equations

Four-potential A^a:

$$F_{ab} = A_{b;a} - A_{a;b} = A_{b,a} - A_{a,b}$$ \hspace{1cm} (3)

Field tensor F_{ab} is antisymmetric

Wave equations:

$$\frac{1}{\sqrt{-g}} \left[\sqrt{-g} g^{am} g^{bn} (A_{n,m} - A_{m,n}) \right]_{,b} = 4\pi j^a$$ \hspace{1cm} (4)
Four-potential A^a: \[F_{ab} = A_{b;a} - A_{a;b} = A_{b,a} - A_{a,b} \] (3)

Field tensor F_{ab} is antisymmetric

Wave equations:
\[\frac{1}{\sqrt{-g}} \left[\sqrt{-g} g^{am} g^{bn} (A_{n,m} - A_{m,n}) \right]_{,b} = 4\pi j^a \] (4)

Continuity equation: $j^a;_a = 0$
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Einstein-Maxwell equations

Four-potential A^a:

$$ F_{ab} = A_b{};a - A_a{};b = A_{b,a} - A_{a,b} $$

Field tensor F_{ab} is antisymmetric

Wave equations:

$$ \frac{1}{\sqrt{-g}} \left[\sqrt{-g} g^{am} g^{bn} (A_{n,m} - A_{m,n}) \right]_{,b} = 4\pi j^a $$

Continuity equation: $j^a{};a = 0$

Lorentz gauge:

$$ A^a{};a = \frac{1}{\sqrt{-g}} \left(A^a \sqrt{-g} \right)_{,a} = 0 $$
Table of Contents

1 Motivation

2 Basic concepts
 - The Einstein-Maxwell equations
 - The Model of Matter
 - Metric and Four-potential
 - Wave and Field equations
 - The Corotating frame

3 The boundary conditions
 - The disc case
 - Calculation
 - Physical interpretation
Isolated charged dust configuration in equilibrium
Isolated charged dust configuration in equilibrium

- Far field:
Isolated charged dust configuration in equilibrium

- Far field: $g_{ab} = \eta_{ab} + \mathcal{O}(r^{-1})$ (see also [Stephani, 1991])
Isolated charged dust configuration in equilibrium

- **Far field**: \(g_{ab} = \eta_{ab} + \mathcal{O}(r^{-1}) \) (see also [Stephani, 1991])
 \(\rightarrow \) asymptotically flat spacetime
Isolated charged dust configuration in equilibrium

- **Far field:** $g_{ab} = \eta_{ab} + \mathcal{O}(r^{-1})$ (see also [Stephani, 1991])
 → asymptotically flat spacetime

- **Stationarity and axisymmetry:**
Isolated charged dust configuration in equilibrium

- **Far field:** \(g_{ab} = \eta_{ab} + \mathcal{O}(r^{-1}) \) (see also [Stephani, 1991])
 \(\rightarrow \) asymptotically flat spacetime

- **Stationarity and axisymmetry:**
 \(\rightarrow \) two Killing vectors \(\xi \) and \(\eta \)
Isolated charged dust configuration in equilibrium

- **Far field**: $g_{ab} = \eta_{ab} + \mathcal{O}(r^{-1})$
 (see also [Stephani, 1991])
 → asymptotically flat spacetime

- **Stationarity and axisymmetry**:
 → two Killing vectors ξ and η

- **Electrovacuum**: $T_{ab}^{\text{em}} = \frac{1}{4\pi} \left(F_{ac} F_{b}^{\ c} - \frac{1}{4} g_{ab} F_{cd} F^{cd} \right)$
Isolated charged dust configuration in equilibrium

- **Far field:** $g_{ab} = \eta_{ab} + \mathcal{O}(r^{-1})$ (see also [Stephani, 1991])
 \rightarrow asymptotically flat spacetime
- **Stationarity and axisymmetry:**
 \rightarrow two Killing vectors ξ and η
- **Electrovacuum:** $T_{ab}^{em} = \frac{1}{4\pi} \left(F_{ac}F_c^b - \frac{1}{4} g_{ab} F_{cd}F^{cd} \right)$
- **Charged dust:**
 $$T_{ab} = \mu u_a u_b + T_{ab}^{em}$$ \hspace{1cm} (6)
Isolated charged dust configuration in equilibrium

- Far field: $g_{ab} = \eta_{ab} + \mathcal{O}(r^{-1})$ (see also [Stephani, 1991])
 \rightarrow asymptotically flat spacetime

- Stationarity and axisymmetry:
 \rightarrow two Killing vectors ξ and η

- Electrovacuum: $T^{\text{em}}_{ab} = \frac{1}{4\pi} \left(F_{ac} F^c_b - \frac{1}{4} g_{ab} F_{cd} F^{cd} \right)$

- Charged dust:
 \[T_{ab} = \mu u_a u_b + T^{\text{em}}_{ab} \] \hspace{1cm} (6)

 $\rightarrow T = -\mu$
Isolated charged dust configuration in equilibrium

- **Far field**: $g_{ab} = \eta_{ab} + O(r^{-1})$ (see also [Stephani, 1991])
 → asymptotically flat spacetime

- **Stationarity and axisymmetry**:
 → two Killing vectors ξ and η

- **Electrovacuum**: $T_{ab}^{\text{em}} = \frac{1}{4\pi} \left(F_{ac}F_{cb} - \frac{1}{4} g_{ab}F_{cd}F^{cd} \right)$

- **Charged dust**:
 $$T_{ab} = \mu u_a u_b + T_{ab}^{\text{em}}$$ \hspace{1cm} (6)
 → $T = -\mu$

- **Convective current of particles**: $j^a = \rho_{\text{el}} u^a$
Isolated charged dust configuration in equilibrium

- **Far field**: $g_{ab} = \eta_{ab} + \mathcal{O}(r^{-1})$ (see also [Stephani, 1991])
 \[\rightarrow \text{asymptotically flat spacetime} \]

- **Stationarity and axisymmetry**: \[\rightarrow \text{two Killing vectors } \xi \text{ and } \eta \]

- **Electrovacuum**: $T_{ab}^{\text{em}} = \frac{1}{4\pi} \left(F_{ac} F_b^c - \frac{1}{4} g_{ab} F_{cd} F^{cd} \right)$

- **Charged dust**:
 \[T_{ab} = \mu u_a u_b + T_{ab}^{\text{em}} \]
 \[\rightarrow T = -\mu \]

- **Convective current of particles**: $j^a = \varrho_{\text{el}} u^a$

- **Charge density is proportional to mass density**: $\varrho_{\text{el}} = \epsilon \mu$
 with constant $\epsilon \in [-1, 1]$
Isolated charged dust configuration in equilibrium

- Far field: $g_{ab} = \eta_{ab} + O(r^{-1})$ (see also [Stephani, 1991])
 \rightarrow asymptotically flat spacetime
- Stationarity and axisymmetry:
 \rightarrow two Killing vectors ξ and η
- Electrovacuum: $T_{ab}^{\text{em}} = \frac{1}{4\pi} \left(F_{ac} F_b{}^c - \frac{1}{4} g_{ab} F_{cd} F^{cd} \right)$
- Charged dust:
 \[
 T_{ab} = \mu u_a u_b + T_{ab}^{\text{em}}
 \]
 $\rightarrow T = -\mu$
- Convective current of particles: $j^a = \rho_{el} u^a$
- Charge density is proportional to mass density: $\rho_{el} = \epsilon \mu$
 with constant $\epsilon \in [-1, 1]$
- $\epsilon = 0 \rightarrow$ uncharged case
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Model of Matter

Isolated charged dust configuration in equilibrium

- Far field: \(g_{ab} = \eta_{ab} + O\left(r^{-1}\right) \) (see also [Stephani, 1991])
 \(\rightarrow \) asymptotically flat spacetime
- Stationarity and axisymmetry:
 \(\rightarrow \) two Killing vectors \(\xi \) and \(\eta \)
- Electrovacuum: \(T_{ab}^{\text{em}} = \frac{1}{4\pi} \left(F_{ac}F_{b}^{\ c} - \frac{1}{4}g_{ab}F_{cd}F^{cd} \right) \)
- Charged dust:
 \(T_{ab} = \mu u_{a}u_{b} + T_{ab}^{\text{em}} \) \hspace{1cm} (6)
 \(\rightarrow T = -\mu \)
- Convective current of particles: \(j^{a} = \rho_{\text{el}}u^{a} \)
- Charge density is proportional to mass density: \(\rho_{\text{el}} = \epsilon \mu \)
 with constant \(\epsilon \in [-1, 1] \)
- \(\epsilon = 0 \rightarrow \) uncharged case
- \(\epsilon = \pm 1 \rightarrow \) ECD case
Local energy-momentum conservation: $T^{ab}_{;b} = 0$
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Model of Matter

- Local energy-momentum conservation: $T^{ab}_{\;;b} = 0$
- Baryonic mass balance:

$$\left(\mu u^a\right)_{;a} = 0 \Rightarrow \left(\epsilon\mu u^a\right)_{;a} = j^a_{;a} = 0$$
Local energy-momentum conservation: $T^{ab}_{;b} = 0$

Baryonic mass balance:

$$(\mu u^a)_{;a} = 0 \Rightarrow (\epsilon \mu u^a)_{;a} = j^a_{;a} = 0$$

Equations of motion:

$$\mu \dot{u}^a = \mu \frac{Du^a}{D\tau} = f^a$$
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Model of Matter

- Local energy-momentum conservation: $T^{ab}_{;b} = 0$
- Baryonic mass balance:

 $$(\mu u^a)_{;a} = 0 \Rightarrow (\epsilon \mu u^a)_{;a} = j^a_{;a} = 0$$

- Equations of motion:

 $$\mu \dot{u}^a = \mu \frac{Du^a}{D\tau} = f^a$$

 with Lorentz force density $f^a = \epsilon \mu F^{ab} u_b$
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Model of Matter

- Local energy-momentum conservation: $T^{ab}_{\ ;b} = 0$
- Baryonic mass balance:
 \[(\mu u^a)_{;a} = 0 \implies (\epsilon \mu u^a)_{;a} = j^a_{;a} = 0\]

- Equations of motion:
 \[
 \mu \dot{u}^a = \mu \frac{D u^a}{D\tau} = f^a
 \]
 with Lorentz force density $f^a = \epsilon \mu F^{ab} u_b$
 → Local mass conservation and the particles are moving under the influence of the Lorentz force
Table of Contents

1 Motivation

2 Basic concepts
 - The Einstein-Maxwell equations
 - The Model of Matter
 - Metric and Four-potential
 - Wave and Field equations
 - The Corotating frame

3 The boundary conditions
 - The disc case
 - Calculation
 - Physical interpretation
Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\phi$
Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\phi$
→ Lewis-Papapetrou Coordinates (ρ, ζ, φ, t)
Boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

- Metric and Four-potential

 - Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\varphi$
 → Lewis-Papapetrou Coordinates $(\rho, \zeta, \varphi, t)$

 - Metric

 \[
 ds^2 = f^{-1} \left[h (d\rho^2 + d\zeta^2) + W^2 d\varphi^2 \right] - f (dt + a d\varphi)^2
 \]

 with four metric potentials $f = e^{2U}$, $h = e^{2k}$, W and a only depending on ρ and ζ
Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\varphi$
→ Lewis-Papapetrou Coordinates $(\rho, \zeta, \varphi, t)$

Metric

$$ds^2 = f^{-1} \left[h (d\rho^2 + d\zeta^2) + W^2 d\varphi^2 \right] - f (dt + ad\varphi)^2$$ \hspace{1cm} (7)

with four metric potentials $f = e^{2U}$, $h = e^{2k}$, W and a only depending on ρ and ζ

Circularity condition
Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\varphi$ → Lewis-Papapetrou Coordinates $(\varrho, \varsigma, \varphi, t)$

Metric

$$ds^2 = f^{-1} \left[h (d\varrho^2 + d\varsigma^2) + W^2 d\varphi^2 \right] - f (dt + ad\varphi)^2$$ \hspace{1cm} (7)

with four metric potentials $f = e^{2U}, h = e^{2k}, W$ and a only depending on ϱ and ς

Circularity condition → $u^a = (0, 0, u^\varphi, u^t), \quad j^a = (0, 0, j^\varphi, j^t)$

The boundary value problem for a rigidly rotating disc of charged dust
Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\varphi$
\rightarrow Lewis-Papapetrou Coordinates $(\varrho, \zeta, \varphi, t)$

Metric

$$ds^2 = f^{-1} \left[h \left(d\varrho^2 + d\zeta^2 \right) + W^2 d\varphi^2 \right] - f \left(dt + a d\varphi \right)^2$$ \hspace{1cm} (7)

with four metric potentials $f = e^{2U}, h = e^{2k}, W$ and a only depending on ϱ and ζ

Circularity condition $\rightarrow u^a = (0, 0, u^\varphi, u^t), \quad j^a = (0, 0, j^\varphi, j^t)$
\rightarrow We can use the metric (7) \textit{inside} the matter
Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\varphi$
→ Lewis-Papapetrou Coordinates $(\varrho, \zeta, \varphi, t)$

Metric

$$ds^2 = f^{-1} \left[h (d\varrho^2 + d\zeta^2) + W^2 d\varphi^2 \right] - f (dt + ad\varphi)^2 \quad (7)$$

with four metric potentials $f = e^{2U}$, $h = e^{2k}$, W and a only depending on ϱ and ζ

Circularity condition → $u^a = (0, 0, u^\varphi, u^t)$, $j^a = (0, 0, j^\varphi, j^t)$
→ We can use the metric (7) inside the matter

a: Gravitomagnetic potential
The boundary value problem for a rigidly rotating disc of charged dust

- **Basic concepts**
- **Metric and Four-potential**

- Coordinate system with \(\xi = \partial_t \) and \(\eta = \partial_\varphi \)
 \(\rightarrow \) Lewis-Papapetrou Coordinates \((\varrho, \zeta, \varphi, t) \)

- Metric

\[
ds^2 = f^{-1} \left[h \left(d\varrho^2 + d\zeta^2 \right) + W^2 d\varphi^2 \right] - f \left(dt + a d\varphi \right)^2 \tag{7}
\]

with four metric potentials \(f = e^{2U}, h = e^{2k}, W \) and \(a \) only depending on \(\varrho \) and \(\zeta \)

- Circularity condition \(\rightarrow u^a = (0, 0, u^\varphi, u^t), \ j^a = (0, 0, j^\varphi, j^t) \)
 \(\rightarrow \) We can use the metric (7) *inside* the matter

- **a**: Gravitomagnetic potential, newtonian limit: \(U \rightarrow U^G \)
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

Metric and Four-potential

- Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\varphi$
 \rightarrow Lewis-Papapetrou Coordinates $(\varrho, \zeta, \varphi, t)$

- Metric

$$ds^2 = f^{-1} [h (d\varrho^2 + d\zeta^2) + W^2 d\varphi^2] - f (dt + ad\varphi)^2$$ \hspace{1cm} (7)

 with four metric potentials $f = e^{2U}$, $h = e^{2k}$, W and a only depending on ϱ and ζ

- Circularity condition $\rightarrow u^a = (0, 0, u^\varphi, u^t)$, $j^a = (0, 0, j^\varphi, j^t)$
 \rightarrow We can use the metric (7) inside the matter

- a: Gravitomagnetic potential, newtonian limit: $U \rightarrow U^G$

- Rigidly rotating: The matter rotates with the constant angular velocity $\Omega = d\varphi/dt$
The boundary value problem for a rigidly rotating disc of charged dust

- **Basic concepts**
- **Metric and Four-potential**

- Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\varphi$
 → Lewis-Papapetrou Coordinates $(\varrho, \zeta, \varphi, t)$

- Metric

$$ds^2 = f^{-1} \left[h (d\varrho^2 + d\zeta^2) + W^2 d\varphi^2 \right] - f (dt + a d\varphi)^2 \quad (7)$$

with four metric potentials $f = e^{2U}$, $h = e^{2k}$, W and a only depending on ϱ and ζ

- Circularity condition → $u^a = (0, 0, u^\varphi, u^t)$, $j^a = (0, 0, j^\varphi, j^t)$
 → We can use the metric (7) inside the matter

- a: Gravitomagnetic potential, newtonian limit: $U \to U^G$

- Rigidly rotating: The matter rotates with the constant angular velocity $\Omega = d\varphi/dt$

- Far field: $ds^2 \to$ Minkowski metric in cylindrical coordinates
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

Metric and Four-potential

- Coordinate system with \(\xi = \partial_t \) and \(\eta = \partial_\varphi \)
 \(\rightarrow \) Lewis-Papapetrou Coordinates \((\varrho, \zeta, \varphi, t)\)

- Metric

\[
\text{d}s^2 = f^{-1} \left[h \left(\text{d}\varrho^2 + \text{d}\zeta^2 \right) + W^2 \text{d}\varphi^2 \right] - f \left(\text{d}t + a \text{d}\varphi \right)^2
\]

\(7\)

with four metric potentials \(f = e^{2U} \), \(h = e^{2k} \), \(W \) and \(a \) only depending on \(\varrho \) and \(\zeta \)

- Circularity condition \(\rightarrow u^a = (0, 0, u^\varphi, u^t), \ j^a = (0, 0, j^\varphi, j^t) \)
 \(\rightarrow \) We can use the metric \((7)\) inside the matter

- \(a \): Gravitomagnetic potential, newtonian limit: \(U \rightarrow U^G \)

- Rigidly rotating: The matter rotates with the constant angular velocity \(\Omega = \frac{\text{d}\varphi}{\text{d}t} \)

- Far field: \(\text{d}s^2 \rightarrow \) Minkowski metric in cylindrical coordinates

\(U \rightarrow 0, a \rightarrow 0, k \rightarrow 0 \) and \(W \rightarrow \varrho \)
Coordinate system with $\xi = \partial_t$ and $\eta = \partial_\varphi$
 → Lewis-Papapetrou Coordinates $(\varrho, \zeta, \varphi, t)$

Metric

\[
ds^2 = f^{-1} \left[h \left(d\varrho^2 + d\zeta^2 \right) + W^2 d\varphi^2 \right] - f \left(dt + a d\varphi \right)^2 \tag{7}\]

with four metric potentials $f = e^{2U}$, $h = e^{2k}$, W and a only depending on ϱ and ζ

Circularity condition → $u^a = (0, 0, u^\varphi, u^t)$, $j^a = (0, 0, j^\varphi, j^t)$
 → We can use the metric (7) inside the matter

a: Gravitomagnetic potential, newtonian limit: $U \to U^G$

Rigidly rotating: The matter rotates with the constant angular velocity $\Omega = d\varphi/dt$

Far field: $ds^2 \to$ Minkowski metric in cylindrical coordinates $U \to 0, a \to 0, k \to 0$ and $W \to \varrho$

Lorentz gauge → $A_a = (0, 0, A^\varphi, A^t)$, $A^a = (0, 0, A^\varphi, A^t)$
Global field equation: \(W,\varrho,\varrho + W,\zeta,\zeta = 0 \)
Global field equation: $W,\varrho,\varrho + W,\zeta,\zeta = 0$

asymptotic behaviour $\to W = \varrho$
Global field equation: $W,\varrho,\varrho + W,\zeta,\zeta = 0$

asymptotic behaviour $\to W = \varrho$

Lewis-Papapetrou-Weyl Coordinates:

$$ds^2 = f^{-1} \left[h (d\varrho^2 + d\zeta^2) + \varrho^2 d\varphi^2 \right] - f (dt + a d\varphi)^2$$
Global field equation: \(W,\varrho,\varrho + W,\zeta,\zeta = 0 \)

asymptotic behaviour \(\rightarrow W = \varrho \)

Lewis-Papapetrou-Weyl Coordinates:

\[
\begin{align*}
ds^2 &= f^{-1} \left[h \left(d\varrho^2 + d\zeta^2 \right) + \varrho^2 d\varphi^2 \right] - f \left(dt + ad\varphi \right)^2
\end{align*}
\]

Reflectional symmetry:

\(\rightarrow g_{ab}(\varrho, -\zeta) = g_{ab}(\varrho, \zeta) \)
The boundary value problem for a rigidly rotating disc of charged dust

- Basic concepts
- Metric and Four-potential

- Global field equation: \(W_{,\varrho,\varrho} + W_{,\zeta,\zeta} = 0 \)
 asymptotic behaviour \(\rightarrow W = \varrho \)

- Lewis-Papapetrou-Weyl Coordinates:
 \[
 ds^2 = f^{-1} \left[h \left(d\varrho^2 + d\zeta^2 \right) + \varrho^2 d\varphi^2 \right] - f \left(dt + a d\varphi \right)^2
 \]

- Reflectional symmetry:
 \(\rightarrow g_{ab}(\varrho, -\zeta) = g_{ab}(\varrho, \zeta) \) and \(A^a(\varrho, -\zeta) = A^a(\varrho, \zeta) \)
Global field equation: $W_{,\varrho,\varrho} + W_{,\zeta,\zeta} = 0$

asymptotic behaviour $\rightarrow W = \varrho$

Lewis-Papapetrou-Weyl Coordinates:

$$ds^2 = f^{-1} \left[h \left(d\varrho^2 + d\zeta^2 \right) + \varrho^2 d\varphi^2 \right] - f \left(dt + a d\varphi \right)^2$$

Reflectional symmetry:

$g_{ab}(\varrho, -\zeta) = g_{ab}(\varrho, \zeta)$ and $A^a(\varrho, -\zeta) = A^a(\varrho, \zeta)$

Potentials: $f(\varrho, -\zeta) = f(\varrho, \zeta)$, ...
Table of Contents

1 Motivation

2 Basic concepts
 - The Einstein-Maxwell equations
 - The Model of Matter
 - Metric and Four-potential
 - Wave and Field equations
 - The Corotating frame

3 The boundary conditions
 - The disc case
 - Calculation
 - Physical interpretation
The boundary value problem for a rigidly rotating disc of charged dust

- **Basic concepts**

- **Wave and Field equations**

- Wave and field equations:

\[4\pi\varepsilon\mu f^{-1}hu^\varphi = \nabla \cdot \left[\frac{f}{\varrho^2} (a\nabla A_t - \nabla A_\varphi) \right] \]

\[-4\pi\varepsilon\mu f^{-1}hu^t = \nabla \cdot \left[\frac{af}{\varrho^2} (a\nabla A_t - \nabla A_\varphi) - \frac{1}{f} \nabla A_t \right] \]

\[16\pi\mu\varrho f^{-1}hu^\varphi (\varepsilon A_t + u_t) = \nabla \cdot \left[\frac{f^2}{\varrho^2} \nabla a + 4\frac{f}{\varrho^2} A_t (a\nabla A_t - \nabla A_\varphi) \right] \]

\[8\pi\mu fh [2u^\varphi (u_\varphi - au_t) + 1] = f\Delta f - (\nabla f)^2 + \frac{f^4}{\varrho^2} (\nabla a)^2 \]

\[- 2f \left[(\nabla A_t)^2 + \frac{f^2}{\varrho^2} (a\nabla A_t - \nabla A_\varphi)^2 \right] \]
Wave and field equations:

\[4\pi \epsilon \mu f^{-1} hu^\varphi = \nabla \cdot \left[\frac{f}{\varrho^2} (a \nabla A_t - \nabla A_\varphi) \right] \] (8)

\[-4\pi \epsilon \mu f^{-1} hu^t = \nabla \cdot \left[\frac{af}{\varrho^2} (a \nabla A_t - \nabla A_\varphi) - \frac{1}{f} \nabla A_t \right] \] (9)

\[16\pi \mu \varrho f^{-1} hu^\varphi (\epsilon A_t + u_t) = \nabla \cdot \left[\frac{f^2}{\varrho^2} \nabla a + 4 \frac{f}{\varrho^2} A_t (a \nabla A_t - \nabla A_\varphi) \right] \] (10)

\[8\pi \mu fh \left[2u^\varphi (u_\varphi - au_t) + 1 \right] = f \Delta f - (\nabla f)^2 + \frac{f^4}{\varrho^2} (\nabla a)^2 \]

\[-2f \left[(\nabla A_t)^2 + \frac{f^2}{\varrho^2} (a \nabla A_t - \nabla A_\varphi)^2 \right] \] (11)

Complex Ernst potentials in electrovacuum \((\mu = 0)\):
The boundary value problem for a rigidly rotating disc of charged dust

- **Basic concepts**
- **Wave and Field equations**

Wave and field equations:

\[
4\pi\varepsilon\mu f^{-1}hu^\varphi = \nabla \cdot \left[\frac{f}{\varrho^2} (a\nabla A_t - \nabla A_\varphi) \right] \quad (8)
\]

\[
-4\pi\varepsilon\mu f^{-1}hu^t = \nabla \cdot \left[\frac{af}{\varrho^2} (a\nabla A_t - \nabla A_\varphi) - \frac{1}{f} \nabla A_t \right] \quad (9)
\]

\[
16\pi\mu\varrho f^{-1}hu^\varphi (\varepsilon A_t + u_t) = \nabla \cdot \left[\frac{f^2}{\varrho^2} \nabla a + 4\frac{f}{\varrho^2} A_t (a\nabla A_t - \nabla A_\varphi) \right] \quad (10)
\]

\[
8\pi\mu fh [2u^\varphi (u_\varphi - au_t) + 1] = f\Delta f - (\nabla f)^2 + \frac{f^4}{\varrho^2} (\nabla a)^2 - 2f \left[(\nabla A_t)^2 + \frac{f^2}{\varrho^2} (a\nabla A_t - \nabla A_\varphi)^2 \right] \quad (11)
\]

Complex Ernst potentials in electrovacuum (\(\mu = 0\)):

- \(\Phi = \alpha + i\beta\) with \(\alpha = -A_t\) and

\[
\nabla \times \left(\frac{\beta}{\varrho} \mathbf{e}_\varphi \right) = -\frac{f}{\varrho^2} (a\nabla A_t - \nabla A_\varphi)
\]
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

Wave and Field equations

Wave and field equations:

\[4\pi\epsilon \mu f^{-1} hu^\varphi = \nabla \cdot \left[\frac{f}{\varrho^2} (a\nabla A_t - \nabla A_\varphi) \right] \]

(8)

\[-4\pi\epsilon \mu f^{-1} hu^t = \nabla \cdot \left[\frac{af}{\varrho^2} (a\nabla A_t - \nabla A_\varphi) - \frac{1}{f} \nabla A_t \right] \]

(9)

\[16\pi\mu\varrho f^{-1} hu^\varphi (\epsilon A_t + u_t) = \nabla \cdot \left[\frac{f^2}{\varrho^2} \nabla a + 4\frac{f}{\varrho^2} A_t (a\nabla A_t - \nabla A_\varphi) \right] \]

(10)

\[8\pi\mu fh [2u^\varphi (u_\varphi - au_t) + 1] = f\Delta f - (\nabla f)^2 + \frac{f^4}{\varrho^2} (\nabla a)^2 \]

\[- 2f \left[(\nabla A_t)^2 + \frac{f^2}{\varrho^2} (a\nabla A_t - \nabla A_\varphi)^2 \right] \]

(11)

Complex Ernst potentials in electrovacuum \((\mu = 0)\):

- \(\Phi = \alpha + i\beta\) with \(\alpha = -A_t\) and

\[\nabla \times \left(\frac{\beta}{\varrho} e_\varphi \right) = -\frac{f}{\varrho^2} (a\nabla A_t - \nabla A_\varphi) \]

- \(E = (f - \bar{\Phi}\Phi) + ib\) with

\[\nabla \times \left(\frac{b}{\varrho} e_\varphi \right) = -\frac{f^2}{\varrho^2} \nabla a - 2 \Im \left[\bar{\Phi} \nabla \times \left(\frac{\Phi}{\varrho} e_\varphi \right) \right] \]
The boundary value problem for a rigidly rotating disc of charged dust

- **Basic concepts**

- **Wave and Field equations**

 - Ernst equations [Ernst, 1968]:

 \[
 (\Re E + \Phi\Phi) \Delta E = (\nabla E + 2\Phi \nabla \Phi) \cdot \nabla E \tag{12}
 \]

 \[
 (\Re E + \Phi\Phi) \Delta \Phi = (\nabla E + 2\Phi \nabla \Phi) \cdot \nabla \Phi \tag{13}
 \]
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

Wave and Field equations

- **Ernst equations** [Ernst, 1968]:
 \[
 (\mathcal{R}\mathcal{E} + \bar{\Phi}\Phi) \Delta \mathcal{E} = (\nabla \mathcal{E} + 2\bar{\Phi}\nabla \Phi) \cdot \nabla \mathcal{E} \quad (12)
 \]
 \[
 (\mathcal{R}\mathcal{E} + \bar{\Phi}\Phi) \Delta \Phi = (\nabla \mathcal{E} + 2\bar{\Phi}\nabla \Phi) \cdot \nabla \Phi \quad (13)
 \]

- **Field equations for** \(h \):\
 \[
 (\ln h)_{,\rho} = \frac{1}{2} \rho \left((\ln f)^2_{,\rho} - (\ln f)^2_{,\zeta} - \frac{f^2}{\rho^2} (\alpha^2_{,\rho} - \alpha^2_{,\zeta}) \right)

 + 2 \left[\frac{f}{\rho} (A^2_{,\rho} - A^2_{,\zeta}) - \frac{\rho^2 - \alpha^2 f^2}{f \rho} (A^2_{t,\rho} - A^2_{t,\zeta}) - 2 \frac{af}{\rho} (A_{\varphi,\rho} A_{t,\rho} - A_{\varphi,\zeta} A_{t,\zeta}) \right]
 \]

 \[
 (\ln h)_{,\zeta} = \rho \left((\ln f)_{,\rho} (\ln f)_{,\zeta} - \frac{f^2}{\rho^2} \alpha_{,\rho} \alpha_{,\zeta} \right)

 + 4 \left[\frac{f}{\rho} A_{\varphi,\rho} A_{\varphi,\zeta} - \frac{\rho^2 - \alpha^2 f^2}{f \rho} A_{t,\rho} A_{t,\zeta} - \frac{af}{\rho} (A_{\varphi,\zeta} A_{t,\rho} + A_{\varphi,\rho} A_{t,\zeta}) \right]
 \]

 → In electrovacuum \(h \) can be calculated via a path-independent line integral
Table of Contents

1 Motivation

2 Basic concepts
 - The Einstein-Maxwell equations
 - The Model of Matter
 - Metric and Four-potential
 - Wave and Field equations
 - The Corotating frame

3 The boundary conditions
 - The disc case
 - Calculation
 - Physical interpretation
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Co-rotating frame

Coordinate transformation:

\[\rho' = \rho, \quad \zeta' = \zeta, \quad \varphi' = \varphi - \Omega t, \quad t' = t \]
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Corotating frame

- **Coordinate transformation:**
 \[\rho' = \rho, \quad \zeta' = \zeta, \quad \varphi' = \varphi - \Omega t, \quad t' = t \]

- **Metric retains its form:**
 \[ds'^2 = f'^{-1} \left[h' \left(d\rho'^2 + d\zeta'^2 \right) + \rho'^2 d\varphi'^2 \right] - f' \left(dt' + a'd\varphi' \right)^2 \]

 with:

 \[f' = f \left[(1 + \Omega a)^2 - \frac{\Omega^2 \rho^2}{f^2} \right] \]

 \[(1 - \Omega a') f' = (1 + \Omega a) f \]

 \[f'^{-1} h' = f^{-1} h \]
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Corotating frame

- Coordinate transformation:
 \[\rho' = \rho, \quad \zeta' = \zeta, \quad \varphi' = \varphi - \Omega t, \quad t' = t \]

- Metric retains its form:
 \[ds'^2 = f'^{-1} \left[h' (d\rho'^2 + d\zeta'^2) + \varphi'^2 d\varphi'^2 \right] - f' (dt' + a' d\varphi')^2 \]
 with:
 \[f' = f \left[(1 + \Omega a)^2 - \frac{\Omega^2 \varrho^2}{f^2} \right] \]
 \[(1 - \Omega a') f' = (1 + \Omega a) f \]
 \[f'^{-1} h' = f^{-1} h \]

- Four-potential: \(A_{\varphi'} = A_\varphi \) and \(A_{t'} = A_t + \Omega A_\varphi \)
The boundary value problem for a rigidly rotating disc of charged dust

Basic concepts

The Corotating frame

- Coordinate transformation:

\[\rho' = \rho, \quad \zeta' = \zeta, \quad \varphi' = \varphi - \Omega t, \quad t' = t \]

- Metric retains its form:

\[ds'^2 = f'^{-1} \left[h' \left(d\rho'^2 + d\zeta'^2 \right) + \rho'^2 d\varphi'^2 \right] - f' \left(dt' + a' d\varphi' \right)^2 \]

with:

\[f' = f \left[\left(1 + \Omega a \right)^2 - \frac{\Omega^2 \rho^2}{f^2} \right] \]

\[(1 - \Omega a') f' = (1 + \Omega a) f \]

\[f'^{-1} h' = f^{-1} h \]

- Four-potential: \(A_{\varphi'} = A_\varphi \) and \(A_{t'} = A_t + \Omega A_\varphi \)

- Four-velocity: \(u^{a'} = \left(0, 0, 0, e^{-U'} \right) \)
Coordinate transformation:

\[\rho' = \rho, \quad \zeta' = \zeta, \quad \varphi' = \varphi - \Omega t, \quad t' = t \]

Metric retains its form:

\[ds'^2 = f'^{-1} \left[h' (d\rho'^2 + d\zeta'^2) + \rho'^2 d\varphi'^2 \right] - f' (dt' + a' d\varphi')^2 \]

with:

\[f' = f \left[(1 + \Omega a)^2 - \frac{\Omega^2 \rho^2}{f^2} \right] \]

\[(1 - \Omega a') f' = (1 + \Omega a) f \]

\[f'^{-1} h' = f^{-1} h \]

Four-potential: \(A_{\varphi'} = A_\varphi \) and \(A_{t'} = A_t + \Omega A_\varphi \)

Four-velocity: \(u^a' = \left(0, 0, 0, e^{-U'} \right) \)

Wave and field equations retaining their form
Basic concepts

The Corotating frame

- Coordinate transformation:
 \[\rho' = \rho, \quad \zeta' = \zeta, \quad \varphi' = \varphi - \Omega t, \quad t' = t \]

- Metric retains its form:
 \[ds'^2 = f'^{-1} \left[h' \left(d\rho'^2 + d\zeta'^2 \right) + \rho'^2 d\varphi'^2 \right] - f' \left(dt' + a' d\varphi' \right)^2 \]
 with:
 \[f' = f \left[(1 + \Omega a)^2 - \frac{\Omega^2 \rho^2}{f^2} \right] \]
 \[(1 - \Omega a') f' = (1 + \Omega a) f \]
 \[f'^{-1} h' = f^{-1} h \]

- Four-potential: \(A_{\varphi'} = A_\varphi \) and \(A_{t'} = A_t + \Omega A_\varphi \)
- Four-velocity: \(u^{a'} = \left(0, 0, 0, e^{-U'} \right) \)
- Wave and field equations retaining their form
- The metric potentials have a different asymptotic behaviour
Table of Contents

1. **Motivation**

2. **Basic concepts**
 - The Einstein-Maxwell equations
 - The Model of Matter
 - Metric and Four-potential
 - Wave and Field equations
 - The Corotating frame

3. **The boundary conditions**
 - The disc case
 - Calculation
 - Physical interpretation
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

The disc case

- Assuming a circular disc with coordinate radius ρ_0
Assuming a circular disc with coordinate radius ϱ_0

→ domain to be considered as a world cylinder of the surface elements of the two-dimensional surface Σ_2.

The boundary conditions

The disc case
Assuming a circular disc with coordinate radius ϱ_0

→ domain to be considered as a world cylinder of the surface elements of the two-dimensional surface Σ_2,

$$\Sigma_2 : \quad \zeta = 0 \quad (0 \leq \varrho \leq \varrho_0), \quad t = \text{constant}$$
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

The disc case

Assuming a circular disc with coordinate radius \(\varrho_0 \)
→ domain to be considered as a world cylinder of the surface elements of the two-dimensional surface \(\Sigma_2 \),

\[
\Sigma_2 : \quad \zeta = 0 \quad (0 \leq \varrho \leq \varrho_0), \quad t = \text{constant}
\]

Mass density: \(\mu = \sigma (\varrho) e^{2U - 2k} \delta (\zeta) \)
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

The disc case

Assuming a circular disc with coordinate radius ρ_0

→ domain to be considered as a world cylinder of the surface elements of the two-dimensional surface Σ_2,

$$\Sigma_2 : \zeta = 0 \quad (0 \leq \rho \leq \rho_0), \quad t = \text{constant}$$

Mass density: $\mu = \sigma(\rho) e^{2U-2k\delta(\zeta)}$

$\sigma(\rho)$: coordinate dependend surface mass density
Assuming a circular disc with coordinate radius ϱ_0 → domain to be considered as a world cylinder of the surface elements of the two-dimensional surface Σ_2,

$$
\Sigma_2 : \quad \zeta = 0 \quad (0 \leq \varrho \leq \varrho_0), \quad t = \text{constant}
$$

Mass density: $\mu = \sigma (\varrho) e^{2U-2k} \delta (\zeta)$

$\sigma (\varrho)$: coordinate dependent surface mass density → invariant surface mass density $\sigma_p (\varrho) = e^{U-k} \sigma (\varrho)$
Assuming a circular disc with coordinate radius ρ_0 → domain to be considered as a world cylinder of the surface elements of the two-dimensional surface Σ_2,

$$\Sigma_2 : \quad \zeta = 0 \quad (0 \leq \rho \leq \rho_0), \quad t = \text{constant}$$

Mass density: $\mu = \sigma (\rho) e^{2U-2k}\delta (\zeta)$

$\sigma (\rho)$: coordinate dependend surface mass density → invariant surface mass density $\sigma_p (\rho) = e^{U-k}\sigma (\rho)$

Idea: Getting the *electrovacuum* solution from the Ernst equations with boundary data derived from the wave and field equations *inside* the disc

see also [Meinel et al., 2008]
Table of Contents

1 Motivation

2 Basic concepts
 - The Einstein-Maxwell equations
 - The Model of Matter
 - Metric and Four-potential
 - Wave and Field equations
 - The Corotating frame

3 The boundary conditions
 - The disc case
 - Calculation
 - Physical interpretation

Martin Breithaupt
Research Training Group "Quantum and Gravitational Fields"
Asymptotic behaviour: $\Phi \to 0$ and $E \to 1$ as $\varrho^2 + \zeta^2 \to \infty$
The boundary value problem for a rigidly rotating disc of charged dust

Asymptotic behaviour: \(\Phi \to 0 \) and \(\mathcal{E} \to 1 \) as \(\rho^2 + \zeta^2 \to \infty \)

The boundary conditions on the disc are simpler in the corotating frame
Asymptotic behaviour: $\Phi \to 0$ and $\mathcal{E} \to 1$ as $\rho^2 + \zeta^2 \to \infty$

The boundary conditions on the disc are simpler in the corotating frame

Reflectional symmetry:
Results for the potentials hold in the corotating frame
Asymptotic behaviour: $\Phi \to 0$ and $\mathcal{E} \to 1$ as $\varrho^2 + \zeta^2 \to \infty$

The boundary conditions on the disc are simpler in the corotating frame.

Reflectional symmetry:
Results for the potentials hold in the corotating frame
\rightarrow Potentials are continuous across the disc
Asymptotic behaviour: $\Phi \to 0$ and $E \to 1$ as $\rho^2 + \zeta^2 \to \infty$

The boundary conditions on the disc are simpler in the co-rotating frame

Reflectional symmetry:
Results for the potentials hold in the co-rotating frame
\rightarrow Potentials are continuous across the disc
\rightarrow Normal derivatives $f'_,\zeta'_{|\zeta'=0^+} = -f'_,\zeta'_{|\zeta'=0^-}$, ... may jump
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Calculation

- Asymptotic behaviour: $\Phi \to 0$ and $E \to 1$ as $\varrho^2 + \zeta^2 \to \infty$
- The boundary conditions on the disc are simpler in the corotating frame
- Reflectional symmetry:
 Results for the potentials hold in the corotating frame
 → Potentials are continuous across the disc
 → Normal derivatives $f'_{,\zeta'} \bigg|_{\zeta' = 0^+} = -f'_{,\zeta'} \bigg|_{\zeta' = 0^-}$, ... may jump
 → Analogy to electrodynamics
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Calculation

- Asymptotic behaviour: $\Phi \to 0$ and $E \to 1$ as $\varrho^2 + \zeta^2 \to \infty$

- The boundary conditions on the disc are simpler in the corotating frame

- Reflectional symmetry:
 - Results for the potentials hold in the corotating frame
 - Potentials are continuous across the disc
 - Normal derivatives $f',\zeta'|_{\zeta'=0^+} = -f',\zeta'|_{\zeta'=0^-}$, ... may jump
 - Analogy to electrodynamics
 - Integrating the field and wave equations over a small cylinder centered on the disc and applying Gauss theorem
Asymptotic behaviour: \(\Phi \to 0 \) and \(\mathcal{E} \to 1 \) as \(\varrho^2 + \zeta^2 \to \infty \)

The boundary conditions on the disc are simpler in the corotating frame.

Reflectional symmetry:
Results for the potentials hold in the corotating frame
→ Potentials are continuous across the disc
→ Normal derivatives \(f',\zeta' \big|_{\zeta'=0^+} = -f',\zeta' \big|_{\zeta'=0^-} \), ... may jump
→ Analogy to electrodynamics
→ Integrating the field and wave equations over a small cylinder centered on the disc and applying Gauss theorem
→ Potentials \(\beta' \) and \(b' \) are odd functions in \(\zeta' \)
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Calculation

Wave and field equations:

with: \(u \phi' = 0 \), \(u' = e^{-U'} \), \(\mu = \sigma(\varrho) e^{2U - 2k} \delta(\zeta') \), \(f = e^{2U} \), \(h = e^{2k} \)

\[
\nabla \cdot \left[\frac{f'}{\varrho'^2} \left(a' \nabla A_t' - \nabla A_\varphi' \right) \right] = 0 \tag{14}
\]

\[
\nabla \cdot \left[\frac{a' f'}{\varrho'^2} \left(a' \nabla A_t' - \nabla A_\varphi' \right) - \frac{1}{f'} \nabla A_t' \right] = -4\pi \sigma e^{-U'} \delta(\zeta') \tag{15}
\]

\[
\nabla \cdot \left[\frac{f'^2}{\varrho'^2} \nabla a' + 4 \frac{f'}{\varrho'^2} A_t' \left(a' \nabla A_t' - \nabla A_\varphi' \right) \right] = 0 \tag{16}
\]

\[
\nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^3}{\varrho'^2} (\nabla a')^2 - 2 \left[(\nabla A_t')^2 + \frac{f'^2}{\varrho'^2} (a' \nabla A_t' - \nabla A_\varphi')^2 \right] = 8\pi \sigma f' \delta(\zeta') \tag{17}
\]

\[
k'_t,\zeta' = \frac{\varrho'}{2} \left(4U'_t,\varphi',\zeta' - \frac{f'^2}{\varrho'^2} a'_t,\varphi',\zeta' \right)
\]

\[
+ 2 \left[\frac{f'}{\varrho'} (A_\varphi',\varphi' - a' A_t',\varphi') \left(A_\varphi',\zeta' - a' A_t',\zeta' \right) - \frac{\varrho'}{f'} A_t',\varphi' A_t',\zeta' \right] \tag{18}
\]
The boundary value problem for a rigidly rotating disc of charged dust

- The boundary conditions
- Calculation

- Wave and field equations:
 with: \(u^{\varphi'} = 0, \quad u^t = e^{-U'}, \quad \mu = \sigma (\varphi) e^{2U - 2k \delta (\zeta)}, \quad f = e^{2U}, \quad h = e^{2k} \)

\[
\nabla \cdot \left[\frac{f'}{g'} \left(a' \nabla A_t' - \nabla A_{\varphi'} \right) \right] = 0
\]

\((14) \)

\[
\nabla \cdot \left[\frac{a' f'}{g'^2} \left(a' \nabla A_t' - \nabla A_{\varphi'} \right) - \frac{1}{f'} \nabla A_{t'} \right] = -4\pi \sigma e^{-U'} \delta (\zeta')
\]

\((15) \)

\[
\nabla \cdot \left[\frac{f'^2}{g'^2} \nabla a' + 4 \frac{f'}{g'^2} A_{t'} \left(a' \nabla A_t' - \nabla A_{\varphi'} \right) \right] = 0
\]

\((16) \)

\[
\nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^3}{g'^2} (\nabla a')^2 - 2 \left[(\nabla A_{t'})^2 + \frac{f'^2}{g'^2} \left(a' \nabla A_{t'} - \nabla A_{\varphi'} \right)^2 \right] = 8\pi \sigma f' \delta (\zeta')
\]

\((17) \)

\[
k'_{\varphi, t} = \frac{g'}{2} \left(4U' a' U' - \frac{f'^2}{g'^2} a' a' \right)
\]

\[
\quad + 2 \left[\frac{f'}{g'} (A_{\varphi', \varphi'} - a' A_{t', \varphi'}) (A_{\varphi', \zeta'} - a' A_{t', \zeta'}) - \frac{g'}{f'} A_{t', \varphi'} A_{t', \zeta'} \right]
\]

\((18) \)

- Equation \((14) \rightarrow (A_{\varphi', \zeta'} - a' A_{t', \zeta'}) \big|_{\zeta'=0^+} = 0\)
Wave and field equations:

with: \(u^{\phi} = 0 \), \(u^t = e^{-U} \), \(\mu = \sigma (\varrho) e^{2U-2k} \delta (\zeta) \), \(f = e^2U \), \(h = e^{2k} \)

\[
\nabla \cdot \left[\frac{f'}{\varrho'^2} (a' \nabla A^t - \nabla A^{\phi'}) \right] = 0
\]

(14)

\[
\nabla \cdot \left[\frac{a' f'}{\varrho'^2} (a' \nabla A^t - \nabla A^{\phi'}) - \frac{1}{f'} \nabla A^t \right] = -4\pi \sigma e^{-U} \delta (\zeta')
\]

(15)

\[
\nabla \cdot \left[\frac{f'^2}{\varrho'^2} \nabla a' + 4 \frac{f'}{\varrho'^2} A^t (a' \nabla A^t - \nabla A^{\phi'}) \right] = 0
\]

(16)

\[
\nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^3}{\varrho'^2} (\nabla a')^2 - 2 \left[(\nabla A^t)^2 + \frac{f'^2}{\varrho'^2} (a' \nabla A^t - \nabla A^{\phi'})^2 \right] = 8\pi \sigma f' \delta (\zeta')
\]

(17)

\[
k'_{,\zeta'} = \frac{\varrho'}{2} \left(4U^{,\varrho'} U^{,\zeta'} - \frac{f'^2}{\varrho'^2} a'^{,\varrho'} a'^{,\zeta'} \right)
\]

\[
+ 2 \left[\frac{f'}{\varrho'} (A_{,\varrho'}^{,\varrho'} - a'^{,\varrho'} A^t,\varrho') (A^{,\zeta'}_{,\varrho'} - a'^{,\zeta'} A^t,\zeta') - \frac{\varrho'}{f'} A^{,\varrho'}_{,\varrho'} A^t,\zeta' \right]
\]

(18)

Equation (14) \(\rightarrow (A^{,\varrho'}_{,\varrho'} - a'^{,\varrho'} A^t,\varrho') \mid_{\zeta'=0^+} = 0 \) \(\rightarrow \beta'^{,\varrho'} = 0 \) \(\rightarrow (1) : \beta' = 0 \)
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

- Wave and field equations:
 - with: \(u' \phi' = 0, \quad u' = e^{-U'}, \quad \mu = \sigma (\phi) e^{2U-2k} \delta (\zeta'), \quad f = e^{2U}, \quad h = e^{2k} \)

\[
\nabla \cdot \left[\frac{f'}{\rho'2} (a' \nabla A_{t'} - \nabla A_{\phi'}) \right] = 0 \quad (14)
\]

\[
\nabla \cdot \left[\frac{a' f'}{\rho'2} (a' \nabla A_{t'} - \nabla A_{\phi'}) - \frac{1}{f'} \nabla A_{t'} \right] = -4\pi \sigma \epsilon e^{-U'} \delta (\zeta') \quad (15)
\]

\[
\nabla \cdot \left[\frac{f'^2}{\rho'2} \nabla a' + 4 \frac{f'}{\rho'2} A_{t'} (a' \nabla A_{t'} - \nabla A_{\phi'}) \right] = 0 \quad (16)
\]

\[
\nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^3}{\rho'^2} (\nabla a')^2 - 2 \left(\nabla A_{t'} \right)^2 + \frac{f'^2}{\rho'^2} (a' \nabla A_{t'} - \nabla A_{\phi'})^2 \right] = 8\pi \sigma f' \delta (\zeta') \quad (17)
\]

\[
\kappa'_{\zeta'} = \frac{\rho'}{2} \left(4U'_{\phi'} U'_{\zeta'} - \frac{f'^2}{\rho'^2} a'_{\phi'} a'_{\zeta'} \right) + 2 \left[\frac{f'}{\rho'} (A_{\phi'_{\phi'}} - a' A_{t'_{\phi'}}) (A_{\phi'_{\zeta'}} - a' A_{t'_{\zeta'}}) - \frac{\rho'}{f'} A_{t'_{\phi'}} a' A_{t'_{\zeta'}} \right] \quad (18)
\]

- Equation (14) \(\rightarrow (A_{\phi'_{\phi'}} - a' A_{t'_{\phi'}}) \bigg|_{\zeta'=0^+} = 0 \quad \rightarrow \beta'_{\phi'} = 0 \quad \rightarrow (1) : \beta' = 0 \)

- Equation (15) \(\rightarrow A_{t'_{\phi'}} \bigg|_{\zeta'=0^+} = 2\pi \sigma \epsilon e^U' \)
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Calculation

Wave and field equations:
with: \(u^t' = 0, \quad u^t' = e^{-U'}, \quad \mu = \sigma (\varrho) e^{2U - 2k} \delta (\zeta), \quad f = e^2U, \quad h = e^2k \)

\[
\nabla \cdot \left[\frac{f'}{\varrho'2} (a' \nabla A_{t'} - \nabla A_{\varphi'}) \right] = 0
\]

\[
\nabla \cdot \left[\frac{a'f'}{\varrho'2} (a' \nabla A_{t'} - \nabla A_{\varphi'}) - \frac{1}{f'} \nabla A_{t'} \right] = -4\pi \sigma e^{-U'} \delta (\zeta')
\]

\[
\nabla \cdot \left[\frac{f'^2}{\varrho'2} \nabla a' + 4 \frac{f'}{\varrho'2} A_{t'} (a' \nabla A_{t'} - \nabla A_{\varphi'}) \right] = 0
\]

\[
\nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^3}{\varrho'2} (\nabla a')^2 - 2 \left(\nabla A_{t'} \right)^2 + \frac{f'^2}{\varrho'2} (a' \nabla A_{t'} - \nabla A_{\varphi'})^2 \right] = 8\pi \sigma f' \delta (\zeta')
\]

\[
k'_{\varphi',\zeta'} = \frac{\varrho'}{2} \left(4U'_{\varphi'} U'_{\zeta'} - \frac{f'^2}{\varrho'2} a'_{\varphi'} a'_{\zeta'} \right)
\]

\[
+ 2 \left[\frac{f'}{\varrho'} (A_{\varphi',\varrho'} - a' A_{t',\varrho'}) (A_{\varphi',\zeta'} - a' A_{t',\zeta'}) - \frac{\varrho'}{f'} A_{t',\varrho'} A_{t',\zeta'} \right]
\]

Equation (14) \(\rightarrow (A_{\varphi',\zeta'} - a' A_{t',\zeta'}) \bigg|_{\zeta' = 0^+} = 0 \quad \rightarrow \beta'_{\varrho'} = 0 \quad \rightarrow (1) : \beta' = 0 \)

Equation (15) \(\rightarrow A_{t',\zeta'} \bigg|_{\zeta' = 0^+} = 2\pi \sigma \epsilon e^{U'} \)

Equation (16) \(\rightarrow a'_{\varphi',\zeta'} \bigg|_{\zeta' = 0^+} = 0 \)
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Calculation

- Wave and field equations:

 With: \(u^{\varphi'} = 0, \ u^{t'} = e^{-U'}, \ \mu = \sigma (\varphi) e^{2U - 2k} \delta (\zeta'), \ f = e^{2U}, \ h = e^{2k} \)

 \[
 \nabla \cdot \left[\frac{f'}{g'} (a' \nabla A_{t'} - \nabla A_{\varphi'}) \right] = 0
 \]
 \[
 \nabla \cdot \left[\frac{a' f'}{g'^2} (a' \nabla A_{t'} - \nabla A_{\varphi'}) - \frac{1}{f'} \nabla A_{t'} \right] = -4\pi \sigma \epsilon e^{-U'} \delta (\zeta')
 \]
 \[
 \nabla \cdot \left[\frac{f'^2}{g'^2} \nabla a' + 4 \frac{f'}{g'^2} A_{t'} (a' \nabla A_{t'} - \nabla A_{\varphi'}) \right] = 0
 \]
 \[
 \nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^3}{g'^2} (\nabla a')^2 - 2 \left((\nabla A_{t'})^2 + \frac{f'^2}{g'^2} (a' \nabla A_{t'} - \nabla A_{\varphi'})^2 \right) = 8\pi \sigma f' \delta (\zeta')
 \]

 \[
 k'_{,\zeta'} = \frac{g'}{2} \left(4U'_{,\varphi'} U'_{,\zeta'} - \frac{f'^2}{g'^2} a'_{,\varphi'} a'_{,\zeta'} \right)
 + 2 \left[\frac{f'}{g'} (A_{\varphi'}_{,\varphi'} - a' A_{t'}_{,\varphi'}) (A_{\varphi'}_{,\zeta'} - a' A_{t'}_{,\zeta'}) - \frac{g'}{f'} A_{t'}_{,\varphi'} A_{t'}_{,\zeta'} \right]
 \]

- Equation (14) \(\rightarrow (A_{\varphi'}_{,\zeta'} - a' A_{t'}_{,\zeta'}) \big|_{\zeta'=0^+} = 0 \) \(\rightarrow \beta'_{,\varphi'} = 0 \) \(\rightarrow (1) : \beta' = 0 \)
- Equation (15) \(\rightarrow A_{t'}_{,\zeta'} \big|_{\zeta'=0^+} = 2\pi \sigma \epsilon e^{U'} \)
- Equation (16) \(\rightarrow a'_{,\zeta'} \big|_{\zeta'=0^+} = 0 \) \(\rightarrow b'_{,\varphi'} = 0 \) \(\rightarrow (2) : b' = 0 \)
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Calculation

Wave and field equations:
with: \(u^{\phi'} = 0, \ u^t = e^{-U'}, \ \mu = \sigma \rho e^{2U - 2k} \delta(\zeta'), \ f = e^{2U}, \ h = e^{2k} \)

\[
\nabla \cdot \left[\frac{f'}{g^2} (a' \nabla A_{t'} - \nabla A_{\phi'}) \right] = 0 \tag{14}
\]

\[
\nabla \cdot \left[\frac{a'f'}{g^2} (a' \nabla A_{t'} - \nabla A_{\phi'}) - \frac{1}{f'} \nabla A_{t'} \right] = -4\pi \sigma \epsilon e^{-U'} \delta(\zeta') \tag{15}
\]

\[
\nabla \cdot \left[\frac{f'^2}{g'^2} \nabla a' + 4 \frac{f'}{g'^2} A_{t'} (a' \nabla A_{t'} - \nabla A_{\phi'}) \right] = 0 \tag{16}
\]

\[
\nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^3}{g'^2} (\nabla a')^2 - 2 \left[(\nabla A_{t'})^2 + \frac{f'^2}{g'^2} (a' \nabla A_{t'} - \nabla A_{\phi'})^2 \right] = 8\pi \sigma f' \delta(\zeta') \tag{17}
\]

\[
k'_{\zeta'} = \frac{g'}{2} \left(4U'_{\phi'} U'_{\zeta'} - \frac{f'^2}{g'^2} a'_{\phi'} a'_{\zeta'} \right)
+ 2 \left[\frac{f'}{g'} (A_{\phi'_{\zeta'} - a' A_{t'_{\zeta'}}}) (A_{\phi'_{\zeta'} - a' A_{t'_{\zeta'}}}) - \frac{g'}{f'} A_{t'_{\phi'}} A_{t'_{\zeta'}} \right] \tag{18}
\]

- Equation (14) \(\to (A_{\phi'_{\zeta'} - a' A_{t'_{\zeta'}}}) \big|_{\zeta' = 0^+} = 0 \to \beta'_{\phi'} = 0 \to (1) : \ beta' = 0 \)
- Equation (15) \(\to A_{t'_{\zeta'}} \big|_{\zeta' = 0^+} = 2\pi \sigma \epsilon e^{U'} \)
- Equation (16) \(\to a'_{\zeta'} \big|_{\zeta' = 0^+} = 0 \to b'_{\phi'} = 0 \to (2) : \ b' = 0 \)
- Equation (17) \(\to U'_{\zeta'} \big|_{\zeta' = 0^+} = 2\pi \sigma \)
The boundary value problem for a rigidly rotating disc of charged dust

Boundary conditions

Calculation

Wave and field equations:

with: \(u \phi' = 0 \), \(u' = e^{-U'} \), \(\mu = \sigma (\varrho) e^{2U-2k} \delta (\zeta) \), \(f = e^{2U} \), \(h = e^{2k} \)

\[
\nabla \cdot \left[\frac{f'}{\varrho'^2} (a' \nabla A_{t'} - \nabla A_{\phi'}) \right] = 0
\]

(14)

\[
\nabla \cdot \left[\frac{a' f'}{\varrho'^2} (a' \nabla A_{t'} - \nabla A_{\phi'}) - \frac{1}{f'} \nabla A_{t'} \right] = -4\pi \sigma e^{-U'} \delta (\zeta')
\]

(15)

\[
\nabla \cdot \left[\frac{f'^2}{\varrho'^2} \nabla a' + 4 \frac{f'}{\varrho'^2} A_{t'} (a' \nabla A_{t'} - \nabla A_{\phi'}) \right] = 0
\]

(16)

\[
\nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^3}{\varrho'^2} (\nabla a')^2 - 2 \left[(\nabla A_{t'})^2 + \frac{f'^2}{\varrho'^2} (a' \nabla A_{t'} - \nabla A_{\phi'})^2 \right] = 8\pi \sigma f' \delta (\zeta')
\]

(17)

\[
k',\zeta' = \frac{\varrho'}{2} \left(4U'_{,\varrho'} U'_{,\zeta'} - \frac{f'^2}{\varrho'^2} a'_{,\varrho'} a'_{,\zeta'} \right)
\]

\[
+ 2 \left[\frac{f'}{\varrho'} (A_{\varphi',\varrho'} - a' A_{t',\varrho'}) (A_{\varphi',\zeta'} - a' A_{t',\zeta'}) - \frac{\varrho'}{f'} A_{t',\varrho'} A_{t',\zeta'} \right]
\]

(18)

Equation (14) \(\rightarrow (A_{\varphi',\zeta'} - a' A_{t',\zeta'}) \mid_{\zeta'=0+} = 0 \) \(\rightarrow \beta_{,\varrho'} = 0 \) \(\rightarrow (1) : \beta' = 0 \)

Equation (15) \(\rightarrow A_{t',\zeta'} \mid_{\zeta'=0+} = 2\pi \sigma \epsilon e^{U'} \)

Equation (16) \(\rightarrow a_{,\varrho'} \mid_{\zeta'=0+} = 0 \) \(\rightarrow b_{,\varrho'} = 0 \) \(\rightarrow (2) : b' = 0 \)

Equation (17) \(\rightarrow U'_{,\zeta'} \mid_{\zeta'=0+} = 2\pi \sigma \epsilon \left(e^{U'}\right)_{,\zeta'} \mid_{\zeta'=0+} = (3) : A_{t',\zeta'} \mid_{\zeta'=0+} = \epsilon \left(e^{U'}\right)_{,\zeta'} \mid_{\zeta'=0+} \)
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Calculation

Wave and field equations:
with: \(u^{\phi'} = 0 \), \(u^t = e^{-U'} \), \(\mu = \sigma (\varrho) e^{2U-2k} \delta (\zeta) \), \(f = e^{2U} \), \(h = e^{2k} \)

\[
\nabla \cdot \left[\frac{f'}{\varrho'^2} (a'^{'} A^t - \nabla A^{\phi'}) \right] = 0
\]
(14)

\[
\nabla \cdot \left[\frac{a'^{'} f'}{\varrho'^2} (a'^{'} A^t - \nabla A^{\phi'}) - \frac{1}{f'} \nabla A^t \right] = -4\pi \sigma \varepsilon e^{-U'} \delta (\zeta')
\]
(15)

\[
\nabla \cdot \left[\frac{f'^{2}}{\varrho'^{2}} \nabla a'^{'} + 4 \frac{f'}{\varrho'^{2}} A^t (a'^{'} A^t - \nabla A^{\phi'}) \right] = 0
\]
(16)

\[
\nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^{3}}{\varrho'^{2}} (\nabla a')^2 - 2 \left[(\nabla A^t)^2 + \frac{f'^{2}}{\varrho'^{2}} (a'^{'} A^t - \nabla A^{\phi'})^2 \right] = 8\pi \sigma f' \delta (\zeta')
\]
(17)

\[
k'^{'}_{\zeta'} = \frac{g'}{2} \left(4U'^{'}_{\varrho'} U'^{'}_{\zeta'} - \frac{f'^{2}}{\varrho'^{2}} a'^{'} a'^{'}_{\varrho'} a'^{'}_{\zeta'} \right)
\]

\[
+ 2 \left[\frac{f'}{\varrho'} (A^{\varphi'}_{\zeta'} - a^{'} A^t_{\zeta'}) (A^{\varphi'}_{\zeta'} - a^{'} A^t_{\zeta'}) - \frac{g'}{f'} A^{t}_{\varrho'} A^{t}_{\zeta'} \right]
\]
(18)

Equation (14) \(\rightarrow (A^{\varphi'}_{\zeta'} - a^{'} A^t_{\zeta'}) \bigg|_{\zeta'=0^+} = 0 \) \(\rightarrow \beta'^{'}_{\varrho'} = 0 \) \(\rightarrow (1) : \beta' = 0 \)

Equation (15) \(\rightarrow A^t_{\zeta'} \bigg|_{\zeta'=0^+} = 2\pi \sigma \varepsilon e^{U'} \)

Equation (16) \(\rightarrow a'^{'}_{\zeta'} \bigg|_{\zeta'=0^+} = 0 \) \(\rightarrow b'^{'}_{\varrho'} = 0 \) \(\rightarrow (2) : b' = 0 \)

Equation (17) \(\rightarrow U'^{'}_{\zeta'} \bigg|_{\zeta'=0^+} = 2\pi \sigma \) \(\rightarrow (3) : A^t_{\zeta'} \bigg|_{\zeta'=0^+} = \varepsilon (e^{U'})_{\zeta'} \bigg|_{\zeta'=0^+} \)

Equation \((R = 8\pi \mu) \rightarrow k'^{'}_{\zeta'} \bigg|_{\zeta'=0^+} = 0 \)
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Calculation

- Wave and field equations:

 with: \(u' = 0 \), \(u' = e^{-U} \), \(\mu = \sigma (\varrho) e^{2U} - 2k \delta (\zeta) \), \(f = e^{2U} \), \(h = e^{2k} \)

\[
\nabla \cdot \left[\frac{f'}{\varrho''} (a' \nabla A_{t'} - \nabla A_{t'}) \right] = 0
\]

\[
\nabla \cdot \left[\frac{\varrho' f'}{\varrho''} (a' \nabla A_{t'} - \nabla A_{t'}) - \frac{1}{f'} \nabla A_{t'} \right] = -4\pi \sigma \epsilon e^{-U} \delta (\zeta')
\]

\[
\nabla \cdot \frac{f'^2}{\varrho''} \nabla a' + 4 \frac{f'}{\varrho''} A_{t'} (a' \nabla A_{t'} - \nabla A_{t'}) = 0
\]

\[
\nabla \cdot \nabla f' - \frac{1}{f'} (\nabla f')^2 + \frac{f'^3}{\varrho''} (\nabla a')^2 - 2 \left[(\nabla A_{t'})^2 + \frac{f'^2}{\varrho''} (a' \nabla A_{t'} - \nabla A_{t'})^2 \right] = 8\pi \sigma f' \delta (\zeta')
\]

\[
k'_{\zeta'} = \frac{\varrho'}{2} \left(4U'_{\varrho'} U'_{\zeta'} - \frac{f'^2}{\varrho''} a'_{\varrho'} a'_{\zeta'} \right)
+ 2 \left[\frac{f'}{\varrho'} (A_{t'\varrho'} - a'_{t'} \varrho') (A_{t'\zeta'} - a'_{t'} \varrho') \right]
+ \frac{\varrho' f'}{f'} (A_{t'\varrho'} - a'_{t'} \varrho') (A_{t'\zeta'} - a'_{t'} \varrho')
\]

- Equation (14) \(\rightarrow \) \((A_{\varrho'\zeta'} - a'_{t'\varrho'}) \big| \zeta' = 0+ = 0 \) \(\rightarrow \beta'_{\varrho'} = 0 \) \(\rightarrow \) (1) : \(\beta' = 0 \)
- Equation (15) \(\rightarrow \) \(A_{t'\zeta'} \big| \zeta' = 0+ = 2\pi \sigma \epsilon e^{U} \)
- Equation (16) \(\rightarrow \) \(a'_{\zeta'} \big| \zeta' = 0+ = 0 \) \(\rightarrow \) \(b'_{\varrho'} = 0 \) \(\rightarrow \) (2) : \(b' = 0 \)
- Equation (17) \(\rightarrow \) \(U'_{\zeta'} \big| \zeta' = 0+ = 2\pi \sigma \) \(\rightarrow \) (3) : \(A_{t'\zeta'} \big| \zeta' = 0+ = \epsilon (e^{U'})_{\zeta'} \big| \zeta' = 0+ \)
- Equation \((R = 8\pi \mu) \rightarrow k'_{\zeta'} \big| \zeta' = 0+ = 0 \)
- Equation (18) \(\rightarrow \) (4) : \((e^{U'})_{\varrho'} \big| \zeta' = 0+ = \epsilon A_{t'\varrho'} \big| \zeta' = 0+ \)
Boundary conditions at the disc for $\zeta' = 0^\pm$: (corotating frame)

$$
\beta' = 0, \quad b' = 0, \quad \left(e^{U'} \right)_{,\varrho'} + \epsilon \alpha'_{,\varrho'} = 0, \quad \alpha'_{,\zeta'} + \epsilon \left(e^{U'} \right)_{,\zeta'} = 0
$$
Boundary conditions at the disc for $\zeta' = 0^\pm$: (corotating frame)

$\beta' = 0, \quad b' = 0, \quad \left(e^{U'}\right)_{,q'} + \epsilon \alpha'_{,q'} = 0, \quad \alpha'_{,\zeta'} + \epsilon \left(e^{U'}\right)_{,\zeta'} = 0$

Regularity conditions at spatial infinity: (nonrotating frame)

$\beta = 0, \quad b = 0, \quad \alpha = 0, \quad f = e^{2U} = 1$
Table of Contents

1. **Motivation**

2. **Basic concepts**
 - The Einstein-Maxwell equations
 - The Model of Matter
 - Metric and Four-potential
 - Wave and Field equations
 - The Corotating frame

3. **The boundary conditions**
 - The disc case
 - Calculation
 - Physical interpretation
First b.c. $\beta' = 0$:

In a inertial frame equation (14) $\nabla \times \vec{H} = 0$.

Integration gives $H_{t c} = 0$.

No local surface charge current in the co rotating frame.

Second b.c. $b' = 0$:

Analog case (a: gravitomagnetic potential)

No local surface mass current in the co rotating frame.

Third b.c.

$\epsilon (e U' + \zeta') = -\alpha' + \zeta' |_{\zeta' = 0} = 2\pi \sigma$, $A'_{t c} |_{\zeta' = 0} = 2\pi \epsilon e U' - \rightarrow$

Relation between mass and charge density.
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Physical interpretation

First b.c. $\beta' = 0$:

In a inertial frame equation (14) $\nabla \times \vec{H} = 0$

\rightarrow Integration gives $H_{tc} = 0$
First b.c. $\beta' = 0$:
In a inertial frame equation (14) $\rightarrow \nabla \times \vec{H} = 0$
\rightarrow Integration gives $H_{tc} = 0$
\rightarrow No local surface charge current in the corotating frame
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

First b.c. $\beta' = 0$:
In a inertial frame equation (14) $\nabla \times \vec{H} = 0$
\rightarrow Integration gives $H_{tc} = 0$
\rightarrow No local surface charge current in the corotating frame

Second b.c. $b' = 0$:
Analog case (a: gravitomagnetic potential)
First b.c. $\beta' = 0$:
In a inertial frame equation (14) $\nabla \times \vec{H} = 0$
\rightarrow Integration gives $H_{tc} = 0$
\rightarrow No local surface charge current in the corotating frame

Second b.c. $b' = 0$:
Analog case (a: gravitomagnetic potential)
\rightarrow No local surface mass current in the corotating frame
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Physical interpretation

First b.c. $\beta' = 0$:
In a inertial frame equation (14) $\nabla \times \vec{H} = 0$
\Rightarrow Integration gives $H_{tc} = 0$
\Rightarrow No local surface charge current in the corotating frame

Second b.c. $b' = 0$:
Analog case (a: gravitomagnetic potential)
\Rightarrow No local surface mass current in the corotating frame

Third b.c. $\epsilon \left(e^{U'} \right)'_{\zeta'} = -\alpha'_{\zeta'}$:

$U', \zeta' \bigg|_{\zeta' = 0^+} = 2\pi \sigma, \quad A_t', \zeta' \bigg|_{\zeta' = 0^+} = 2\pi \sigma \epsilon e^{U'}$
\Rightarrow Relation between mass and charge density
Fourth b.c. $\epsilon \alpha', \varrho' = -\left(eU'\right)'$, ϱ':

Follows also from equations of motion
Fourth b.c. $\epsilon \alpha', g' = - \left(e^U' \right)' g'$:

Follows also from equations of motion

→ Force balance for one particle in the disc
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Physical interpretation

Fourth b.c. \(\epsilon \alpha', \varrho' = - \left(e^{U'} \right)' \varrho' \):

Follows also from equations of motion

→ Force balance for one particle in the disc

\[\epsilon (\alpha - \Omega A_\varphi), \varrho = - \left(e^U \sqrt{(1 + \Omega a)^2 - \Omega^2 \varrho^2 e^{-4U}} \right), \varrho \]
Fourth b.c. $\epsilon \alpha', \varrho' = - \left(e^{U'} \right)_{, \varrho'}$:

Follows also from equations of motion

→ Force balance for one particle in the disc

- $\epsilon (\alpha - \Omega A\varphi), \varrho = - \left(e^{U} \sqrt{(1 + \Omega a)^2 - \Omega^2 \varrho^2 e^{-4U}} \right)_{, \varrho}$

Newtonian limit:

$a \to 0$, $A\varphi \to 0$, $U \to U^G$, $\alpha \to U^E$, $v_{\varphi} = \Omega \varrho \ll 1$
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Physical interpretation

- Fourth b.c. $\epsilon\alpha', \varrho' = -\left(e^{U'} \right)'_{\varrho'}$:

 Follows also from equations of motion

 \rightarrow Force balance for one particle in the disc

 \[\epsilon (\alpha - \Omega A_{\varphi}), \varrho = -\left(e^{U} \sqrt{(1 + \Omega a)^2 - \Omega^2 \varrho^2 e^{-4U}} \right), \varrho \]

 Newtonian limit:

 \[a \rightarrow 0, A_{\varphi} \rightarrow 0, U \rightarrow U^G, \alpha \rightarrow U^E, v_{\varphi} = \Omega \varrho \ll 1 \]

\[\epsilon \left(U^E \right), \varrho \approx -\left[(1 + U^G) \sqrt{1 - \Omega^2 \varrho^2 (1 - 4U^G)} \right], \varrho \]

\[\approx -\left[(1 + U^G) \left(1 - \frac{1}{2} \Omega^2 \varrho^2 \right) \right], \varrho \]

\[\approx -\left[U^G - \frac{1}{2} \Omega^2 \varrho^2 \right], \varrho \]
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Physical interpretation

- Fourth b.c. $\epsilon \alpha', \varrho' = - \left(e^{U'} \right), \varrho'$:

 Follows also from equations of motion

 \rightarrow Force balance for one particle in the disc

 - $\epsilon (\alpha - \Omega A_\varphi), \varrho = - \left(e^{U} \sqrt{(1 + \Omega a)^2 - \Omega^2 \varrho^2} e^{-4 U} \right), \varrho$

 - Newtonian limit:

 $a \to 0, A_\varphi \to 0, U \to U^G, \alpha \to U^E, v_\varphi = \Omega \varrho \ll 1$

 $\epsilon \left(U^E \right), \varrho \approx - \left[\left(1 + U^G \right) \sqrt{1 - \Omega^2 \varrho^2 (1 - 4U^G)} \right], \varrho$

 $\approx - \left[\left(1 + U^G \right) \left(1 - \frac{1}{2} \Omega^2 \varrho^2 \right) \right], \varrho$

 $\approx - \left[U^G - \frac{1}{2} \Omega^2 \varrho^2 \right], \varrho$

- ECD case $\Omega \to 0$
Conclusions
Conclusions

- For a rigidly rotating disc of charged dust we can formulate a boundary value problem for the Ernst equations

\[
(\Re \mathcal{E} + \Phi \overline{\Phi}) \Delta \mathcal{E} = (\nabla \mathcal{E} + 2\Phi \nabla \Phi) \cdot \nabla \mathcal{E}
\]

\[
(\Re \mathcal{E} + \Phi \overline{\Phi}) \Delta \Phi = (\nabla \mathcal{E} + 2\Phi \nabla \Phi) \cdot \nabla \Phi
\]

with \(\Phi = \alpha + i\beta \) and \(\mathcal{E} = (f - \Phi \overline{\Phi}) + i\beta \)
Conclusions

- For a rigidly rotating disc of charged dust we can formulate a boundary value problem for the Ernst equations

\[
(\Re \mathcal{E} + \Phi \Phi) \Delta \mathcal{E} = (\nabla \mathcal{E} + 2 \Phi \nabla \Phi) \cdot \nabla \mathcal{E}
\]

\[
(\Re \mathcal{E} + \Phi \Phi) \Delta \Phi = (\nabla \mathcal{E} + 2 \Phi \nabla \Phi) \cdot \nabla \Phi
\]

with \(\Phi = \alpha + i\beta \) and \(\mathcal{E} = (f - \Phi \Phi) + ib \)

- The boundary conditions are given
 - At spatial infinity in the nonrotating frame:
 \[
 \beta = 0, \quad b = 0, \quad \alpha = 0, \quad f = e^{2U} = 1
 \]
 - At the surface of the disc in the corotating frame:
 \[
 \beta' = 0, \quad b' = 0, \quad (e^{U'})_{,e'} + e\alpha', e' = 0, \quad \alpha', \zeta' + e (e^{U'})_{,\zeta'} = 0
 \]
Conclusions

- For a rigidly rotating disc of charged dust we can formulate a boundary value problem for the Ernst equations

\[(\Re E + \bar{\Phi}\Phi) \Delta E = (\nabla E + 2\bar{\Phi}\nabla\Phi) \cdot \nabla E\]

\[(\Re E + \bar{\Phi}\Phi) \Delta \Phi = (\nabla E + 2\bar{\Phi}\nabla\Phi) \cdot \nabla \Phi\]

with \(\Phi = \alpha + i\beta\) and \(E = (f - \bar{\Phi}\Phi) + ib\)

- The boundary conditions are given
 - At spatial infinity in the nonrotating frame:
 \[\beta = 0, \quad b = 0, \quad \alpha = 0, \quad f = e^{2U} = 1\]
 - At the surface of the disc in the corotating frame:
 \[\beta' = 0, \quad b' = 0, \quad (e^{U'})_{,\varrho'} + e\alpha'_{,\varrho'} = 0, \quad \alpha'_{,\zeta'} + e(e^{U'})_{,\zeta'} = 0\]

- The boundary conditions at the surface of the disc have good physical interpretation
The boundary value problem for a rigidly rotating disc of charged dust

The boundary conditions

Physical interpretation

Ernst, F. J. (1968).
New Formulation of the Axially Symmetric Gravitational Field Problem. II.

Relativistic Figures of Equilibrium.
Cambridge University Press.

On the black hole limit of electrically counterpoised dust configurations.
Classical and Quantum Gravity, 28(22):225010.

The Einsteinian gravitational field of the rigidly rotating disk of dust.

Allgemeine Relativitätstheorie.
Deutscher Verlag der Wissenschaften, Berlin.