Schnelleinstieg Reader


Startseite FSU

G1/1: Gravitating binary systems with spin

Principal Investigators: Schäfer, Brügmann

For compact binary systems with non-rotating components post-Newtonian (pN) approximation schemes have turned out to be especially successful (in explicit analytic calculations this yielded the 3.5pN-order, i.e. order (1/c2)3.5, with c being the speed of light). Although pN-approximations assume weak gravitational fields and small velocities (v < c/3), they are usefull for the description of the low-velocity motion of compact objects (neutron stars, black holes), as in that case the strong self-gravitation of the celestial bodies is frozen in to a great extend and is therefore dynamically decoupled from its trajectory.

further information (german)

Examples of Ph.D. topics

  1. The stress-energy tensor flow algebra of gravitating classicle particles with spin
  2. Hamiltonian 3.5pN-spin-orbit- and 4pN-spin-spin-dynamics of binary black holes
  3. Orbital- and spin-movements of binary black holes in higher pN-orders


M. Tessmer, J. Hartung, G. Schäfer
Aligned Spins: Orbital Elements, Decaying Orbits, and Last Stable Circular Orbit to high post-Newtonian Orders
arXiv:1207.6961 [gr-qc], Jul 2012

S. Hergt, J. Steinhoff, G. Schäfer
Elimination of the spin supplementary condition in the effective field theory approach to the post-Newtonian approximation
Ann. Phys. (N.Y.) 327, 1494 (2012), arXiv: 1110.2094v2 [gr-qc], Oct 2011

H. Wang, J. Steinhoff, J. Zeng, G. Schäfer
Leading-order spin-orbit and spin(1)-spin(2) radiation-reaction Hamiltonians
Phys. Rev. D 84, 124005 (2011), arXiv: 1109.1182v2 [gr-qc], Sep 2011

J. Hartung, J. Steinhoff
Next-to-next-to-leading order post-Newtonian spin(1)-spin(2) Hamiltonian for self-gravitating binaries
Ann. Phys. (Berlin) 523, 919-924 (2011), arXiv: 1107.4294 [gr-qc], Jul 2011

J. Steinhoff
Canonical Formulation of Spin in General Relativity
Ann. Phys. (Berlin) 523, 296 (2011), arXiv: 1106.4203v1 [gr-qc], Jun 2011

J. Hartung, J. Steinhoff
Next-to-next-to-leading order post-Newtonian spin-orbit Hamiltonian for self-gravitating binaries
Ann. Phys. (Berlin) 523, 783-790 (2011), arXiv: 1104.3079 [gr-qc], Apr 2011

J. Hartung, J. Steinhoff
Next-to-leading order spin-orbit and spin(a)-spin(b) Hamiltonians for n gravitating spinning compact objects
Phys. Rev. D 83, 044008 (2011), arXiv: 1011.1179 [gr-qc], Nov 2010

M. Tessmer, J. Hartung, G. Schäfer
Motion and gravitational wave forms of eccentric compact binaries with orbital-angular-momentum-aligned spins under next-to-leading order in spin–orbit and leading order in spin(1)–spin(2) and spin-squared couplings
Class. Quant. Grav. 27, 165005 (2010), arXiv: 1003.2735 [gr-qc], Mar 2010

J. Steinhoff, H. Wang
Canonical formulation of gravitating spinning objects at 3.5 post-Newtonian order
Phys. Rev. D 81, 024022 (2010), arXiv: 0910.1008 [gr-qc], Oct 2009

J. Steinhoff, D. Puetzfeld
Multipolar equations of motion for extended test bodies in General Relativity
Phys. Rev. D 81, 044019 (2010), arXiv: 0909.3756 [gr-qc], Sep 2009

J. Steinhoff, G. Schäfer
Canonical formulation of self-gravitating spinning-object systems
Europhys. Lett. 87, 50004 (2009), arXiv: 0907.1967 [gr-qc]